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Abstract 

The effect of clear speech on the integration of auditory and visual cues to the tense-lax vowel 

distinction in English was investigated in native and non-native (Mandarin) perceivers. Clear 

speech benefits for tense vowels /i, ɑ, u/ were found for both groups across modalities, while lax 

vowels /ɪ, ʌ, ʊ/ showed a clear speech disadvantage for both groups when presented in the visual-

only modality, with Mandarin perceivers showing a further disadvantage for lax vowels presented 

audio-visually, and no difference in speech styles auditorily. English perceiver responses were 

then simulated in an ideal perceiver model which both identified auditory (F1, F2, spectral change, 

duration) and visual (horizontal lip stretch, duration) cues predictive of the clear speech advantage 

for tense vowels, and indicated which dimensions presented the greatest conflict between cues to 

tensity and modifications from clear speech (F2 and duration acoustically, duration visually). 

Altogether, by combining clear speech acoustics, articulation, and perception into a single 

integrated framework we are able to identify some of the signal properties responsible for both 

beneficial and detrimental speech style modifications. 
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Cross-linguistic perception of clearly spoken English tense and lax vowels 

based on auditory, visual, and auditory-visual information 
 

1.0 Introduction 

Face-to-face speech communication may adopt different forms and styles depending on speaking 

environments or communicative needs. In auditorily or visually challenging contexts, talkers 

often alter speech production using a clarified, hyper-articulated speech style to enhance 

intelligibility. This results in both articulatory and acoustic modifications (Gagné, Rochette, and 

Charest, 2002; Helfer, 1997; Moon and Lindblom, 1994; Payton, Uchanski, and Braida, 1994; 

Picheny, Durlach, and Braida, 1985; Uchanski, Choi, Braida, Reed, and Durlach, 1996). This well 

attested style of speech raises important questions as to whether and how these articulatory and 

acoustic changes are utilized by the perceiver to improve intelligibility. While the question of 

perceiver benefits has been addressed by several prior studies (Bradlow and Bent, 2002; Ferguson 

and Kewley-Port, 2002; Krause and Braida, 2002; Picheny et al., 1985; Uchanski et al., 1996), 

fully addressing these questions requires us to simultaneously understand the (implicit) 

motivation of the talker to modify their articulation, the specific articulatory changes of the talker, 

and the resultant effects on perception. This has not been attempted by prior studies. Thus, the 

present study investigates the entire speech chain, by examining the effects of clear (relative to 

plain) speech on auditory-visual (AV) perception of English tense and lax vowels by native 

(English) and non-native (Mandarin) perceivers, as well as the association between articulatory-

acoustic clear-speech modifications and intelligibility. 

 

1.1 Theoretical framework 

Clear speech, a type of hyper-articulation, has been explained within the framework of the H & 

H (hyper- and hypo-articulation) theory (Lindblom, 1990). Under this view, hyper-articulated 

speech is typically produced with the intention to enhance sound category discriminability in 

response to challenging listening situations. Clear speech has been claimed to arise from two 

levels of modifications: signal-based and code-based (Bradlow and Bent, 2002).  

First, talkers could globally modify the signal to enhance general acoustic clarity or saliency 

(signal-based modifications). For example, they could raise the pitch or change the dynamic pitch 

range, decrease speaking rate and insert more pauses, or they could increase the amplitude to help 

separate speech and noise. Such modifications would presumably be uniformly beneficial to all 

listeners, both native (L1) and non-native (L2).   

Second, talkers could also engage what Bradlow and Bent term code-based modifications. 

Such modifications could enhance acoustic distance between phonemic categories, for example, 

by altering the formants to make two vowels more phonetically distinct (e.g., Leung, Jongman, 

Wang, and Sereno, 2016), by non-uniformly modifying segment durations (e.g., lengthening 

typically longer tense vowels more than lax) (Leung et al., 2016), by producing less vowel 

reduction (Ferguson and Kewley-Port, 2007), or by just maintaining pronunciation norms 

(coarticulation, voice-onset time) in speech (Ohala, 1995).  

Both of these modifications must retain segmental cues and keep those cue values within the 

intended category, so that phonemic categorical distinctions can be maintained (Moon and 

Lindblom, 1994; Ohala, 1995). Thus, clear-speech effects must involve coordination of signal- 

and code-based strategies to enhance as well as preserve phonemic distinctions (Moon and 

Lindblom, 1994; Ohala, 1995; Smiljanić and Bradlow, 2009). This may be more challenging in 

cases where signal-based cues like duration or pitch also serve code-based functions.  

In considering the interaction of clear speech effects on various cues on perception, it is clear 

that cues and their influences cannot be examined individually. McMurray and Jongman (2011), 

for example, examined 24 distinct cues to fricatives (and see Cole, Linebaugh, Munson and 

McMurray, 2010, for applications to vowels). Individually, most, if not all, of these cues were 

highly variable and were insufficient to distinguish the fricatives, and even optimally weighting 

and combining them could not lead to listener like levels of performance. However, when the 

same cues were subjected to a simple model that accounted for various causal factors (e.g., talker 

differences, coarticulation), they were able to predict listener performance fairly accurately. This 

suggests that to properly understand the way a given factor (like clear speech) affects perception, 
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one must determine 1) how its effects on multiple cues are weighted and combined to lead to the 

percept; and 2) how the effect of the factor of interest (e.g., clear speech) fits into the context of 

another known influences on the acoustics (e.g., talker differences). We accomplish this here by 

using the Computing Cues Relative to Expectations (C-CuRE) framework (McMurray and 

Jongman, 2011), which relativizes cues to speaker means and then combines them in a statistical 

learning model (typically within the logistic family of models) meant to approximate the decision 

problem presented to listeners in a perception experiment. We use this framework for the 

following: (1) to weight and combine cues; (2) to understand the variety of factors (clear speech 

and beyond) that influence the acoustics and articulation; and (3) to link acoustic and visible 

articulatory modifications to response patterns in perception. 

 

1.2 Clear speech in auditory and visual perception 

1.2.1 Clear-speech benefit 

Clear speech has been shown to be more intelligible than plain, conversational speech. This is 

particularly so when listening conditions are challenging, such as in background noise (Ferguson 

and Kewley-Port, 2002; Ferguson and Quené, 2014; Krause and Braida, 2002; Payton et al., 1994; 

Uchanski et al., 1996), or when listeners are hearing-impaired (Bradlow, Kraus, and Hayes, 2003; 

Liu, Del Rio, Bradlow, and Zeng, 2004; Picheny et al., 1985) or are non-native listeners (Bradlow 

and Bent, 2002). Clear speech typically results in a gain of about 7-38% of tokens recognized in 

clear speech relative to plain speech (Ferguson and Kewley-Port, 2002; Ferguson and Quené, 

2014; Maniwa, Jongman, and Wade, 2008; Payton et al., 1994; Uchanski et al., 1996). This clear 

speech advantage has been observed at different linguistic levels, for sentences (Bradlow and 

Bent, 2002; Gagné, Querengesser, Folkeard, Munhall, and Masterson, 1995; Krause and Braida, 

2002; Payton et al., 1994), words (Gagné, Masterson, Munhall, Bilida, and Querengesser, 1994; 

Uchanski et al., 1996), and segments (Ferguson and Kewley-Port, 2002; Ferguson and Quené, 

2014; Gagné et al., 2002).  

Specifically relevant for the current study is research on vowel intelligibility in English. 

Ferguson (2004) tested the intelligibility of ten English vowels (/i, ɪ, e, ɛ, æ, ɑ, ʌ, o, ʊ, u/ in a 

/bVd/ context) in plain and clear speech styles by 7 young healthy adult native English-speaking 

listeners. The stimuli were presented auditorily in multi-talker babble noise (-10 dB SNR). The 

results show that clear speech was 8.5% more intelligible on average than plain speech. Results 

for individual vowels as shown in Figure 1 of Ferguson (2004) suggest a significant clear-speech 

advantage for / æ, ɑ , ʌ/. Detailed analyses of the acoustics of the stimuli in Ferguson (2004), as 

well as the relation between the acoustics and intelligibility, were provided in a subsequent study 

by Ferguson and Quené (2014). We will refer to those results in section 1.3.2 below. 

Clear speech can also improve intelligibility in visual (facial) speech perception (Gagné et 

al., 1994, 2002; Helfer, 1997; Lander and Capek, 2013; Van Engen, Phelps, Smiljanić, and 

Chandrasekaran, 2014). For example, Gagné and colleagues (1994, 2002) examined the 

perception of clear and plain French CV syllables (/b, d, g, v, z, ʒ/ + /i, y, a/) and found significant 

clear-speech gains in the intelligibility of AV, visual-only, as well as auditory-only presentations. 

These findings demonstrate the existence of a clear-speech advantage across input modalities, 

suggesting that clear speech affects not only acoustic cues, but also visual cues. 

 

1.2.2 Weighting cues across modalities 

Gagné et al. (2002) suggest the magnitude of the clear-speech benefit in visual speech may be 

less than in the auditory modality. Moreover, while either speaking clearly or providing visual 

speech information can be beneficial, the combination of the two can result in greater 

intelligibility gains than each domain alone (Helfer, 1997). Thus, speech style and modality may 

interact to affect speech intelligibility. This raises the question of what factors give rise to this 

interaction. However, research has not systematically explored under what circumstances clear 

speech benefits may differ in auditory versus visual conditions.  

A critical issue in understanding the mechanisms of these variable intelligibility gains is the 

question of the degree to which perceivers weight (or use) inputs from different modalities (or 

different cues within a modality). In AV speech perception, the weight granted to auditory versus 

visual cues can be affected by the relative quality of the information in each channel (Gagné et 
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al., 2002; Hazan, Kim, and Chen, 2010). For example, a compensatory modality weighting effect 

has been found where perceivers utilize information from an alternate modality (e.g., visual) when 

the other (auditory) was degraded (Hazan, et al., 2010; Van Engen, et al., 2014). Similarly, 

perceivers rely more on the auditory modality for low vowels as the acoustic cue to vowel height 

(F1) is more salient, whereas they put more weight on the visual input to perceive rounded vowels 

since the visual cue (lip-rounding) is more salient (Robert-Ribes, Schwartz, Lallouache, and 

Escudier, 1998; Traunmüller and Öhrström, 2007). Likewise, higher visual perceptual accuracy 

was found for identification of the visually more salient labial/labio-dental consonantal contrasts 

compared to visually less salient alveolar/post-alveolar contrasts (Hazan et al., 2006; Wang, 

Behne, and Jiang, 2008). 

These patterns of AV weighting raise questions regarding the role of clear speech in AV 

perception: Does clear speech enhance code-based cues only, making them more salient as 

category-distinctive cues? Or, does clear speech involve global signal-based enhancement, 

resulting in increased salience of information across modalities? Or do these enhancements vary 

across modality? 

 

1.2.3 Clear-speech effects as a function of listener linguistic experience  

Although clear speech consistently benefits typical native language adult listeners, research on 

non-native perception suggests clear speech may be less helpful or even detrimental for L2 

listeners (Bradlow and Bent, 2002; Fenwick, Davis, Best, and Tyler, 2015; Granlund, Hazan, and 

Baker, 2012; Smiljanić and Bradlow, 2011). For example, Bradlow and Bent (2002) found 

substantially smaller clear-speech benefits for non-native listeners as compared to native listeners 

in the intelligibility of clearly produced English sentences.  

What can account for such differences? Bent and Bradlow (2002) suggest that both groups 

are able to take advantage of signal-based modifications, accounting for the small benefit in L2 

listeners (which are largely language independent). However, these groups may differ in their 

ability to use code-based modifications. Native speakers have extensive experience with the 

language and are knowledgeable about the particular phonetic realizations of segments in their 

language, as well as the higher-level contextual structures. This enables them to make use of code-

based modifications. In contrast, non-native speakers have less experience with these aspects of 

the code (in their L2) and may not have been able to perceive or utilize code-based clear-speech 

cue enhancements specific to the L2. 

Research has shown evidence supporting a code-based component to the small clear speech 

intelligibility gains in non-native listeners. For example, in contrast to non-proficient L2 listeners 

(Bradlow and Bent, 2002), fluent L2 listeners showed significantly larger clear-speech 

intelligibility gains in the perception of English sentences (Smiljanić and Bradlow, 2011). Indeed, 

further research at the segmental level has shown that the degree and direction of clear-speech 

effects on non-native speech intelligibility may depend on the relation between L1 and L2 

phonetic inventories. Fenwick et al. (2015) tested AV perception of Sindhi consonants in 

consonant-vowel syllables in clear and plain speech by Australian-English perceivers. The 

consonants contrasted both in place of articulation (POA) and voicing, and in their proximity to 

the perceivers’ L1 (English), with phonologically “two-category” contrasts (/ɓ-ɗ/ [POA] and /f-

v/ [voicing]) and phonetic-level “category-goodness” differences (/d̪-ɖ/ [POA] and /t̪-d̪/ 

[voicing]). While the results showed no clear speech effects for the stimuli with POA contrasts, a 

clear speech benefit was found for voicing only for the phonetic-level category goodness 

differences but not for the two-category contrasts. The results show that clear speech can benefit 

non-native perception when the contrasts are perceived as differing in phonetic “category-

goodness”, indicating benefits from within-category enhancement may be at the “signal” rather 

than “code” level (cf. Bradlow and Bent, 2002) for the non-native listeners. 

These non-native patterns in clear speech reflect the influence of linguistic experience. Clear-

speech benefits may be less robust when non-native listeners are less knowledgeable about the 

sounds in the L2, or about the specific cues to phonetic contrasts in the L2, (Smiljanić and 

Bradlow, 2009), or when they are less proficient in the L2 (Smiljanić and Bradlow, 2011). Such 

findings underscore the possibility of code-based modifications that are specific to the phonetics 

and phonology of the language. On the other hand, non-native listeners may also benefit from 
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clear speech in the L2 when the modifications are perceived as signal-enhancing cues in their L1 

(cf. Fenwick et al., 2015), supporting additional, more general signal-based modifications for the 

clear speech effect. 

Together, results from native and non-native clear-speech perception across AV modalities 

demonstrate differences in clear-speech benefits that may be triggered by saliency-enhancing 

(signal-based) and category-enhancing (code-based) cues. However, intelligibility data alone 

cannot disentangle whether any observed perceptual patterns are directly attributable to signal-

based or code-based modifications in production. 

 

1.3 Linking clear speech perception and production 

1.3.1 Acoustic and visual/articulatory clear speech features 

Isolating code-based from signal-based effects in clear speech is challenging with intelligibility 

data alone, particularly in L1 speakers where variation in linguistic knowledge cannot be brought 

into play. However, in L2 speakers this can be difficult as well, given overlap between the 

languages and variation in the degree of L2 experience.  

In contrast, phonetic studies may be able to isolate code-based changes by examining the 

specific acoustic and articulatory modifications to aspects of the signal that indicate speech 

categories. Understanding the details of what is changing acoustically and articulatorily/visually 

will shed light on differentiating code-based and signal-based effects in clear speech.  

Research on acoustic and articulatory correlates of clear speech (Ferguson and Kewley-Port, 

2002, 2007; Ferguson and Quené, 2014; Leung et al., 2016; Tang et al., 2015; Tasko and Greilick, 

2010; Yehia, Kuratate, and Vatikiotis-Bateson, 2002) has shown that clear speech involves more 

extreme articulatory configurations and correspondingly, more exaggerated acoustic properties 

than are seen in plain speech. In the acoustic domain, studies examining English vowels produced 

in controlled segmental contexts (Ferguson and Kewley-Port, 2002, 2007; Ferguson and Quené, 

2014; Leung et al., 2016) or excised from natural sentential contexts (Hazan and Baker, 2011; 

Kim and Davis, 2014; Lam, Tjaden, and Wilding, 2012; Picheny et al., 1986; Smiljanić and 

Bradlow, 2008) consistently reveal that vowel duration increases in clear speech relative to plain 

speech. Given that this is a global lengthening across all vowels, it is assumed to be a signal-based 

effect.  

However, vowel length is a useful phonetic cue for distinguishing tense and lax vowels. In 

Leung et al. (2016), measures of both absolute and relative vowel duration showed a greater 

lengthening in clear speech for tense vowels than for lax vowels. This data suggests that clear-

speech modifications differentially enhance the properties of vowels (tense vowels being 

intrinsically longer than lax vowels), suggesting instead a code-based modification. 

In this same vein, clear and plain vowels also differ in the spectral domain. Clearly produced 

vowels are characterized by a larger vowel space (F1  F2 space) than plain vowels (Cooke and 

Lu, 2010; Ferguson and Kewley-Port, 2007; Ferguson and Quené, 2014; Leung et al., 2016; 

Smiljanić and Bradlow, 2005), suggesting a code-based modification. Moreover, F1 

modifications may also reflect signal-based properties: plain-to-clear-speech modifications 

generally involve a global increase in F1 regardless of the height of the vowel (Ferguson and 

Kewley-Port, 2002; Ferguson and Quené, 2014; Huber, Stathopoulos, Curione, Ash, and Johnson, 

1999; Lu and Cooke, 2008). Furthermore, clearly produced vowels are globally found to be more 

dynamic than plain vowels, as indicated by relative formant changes along the formant trajectories 

(Ferguson and Kewley-Port, 2002, 2007; Leung et al., 2016; Moon and Lindblom, 1994), all 

suggesting signal-based modification.  

However, the degree of vowel dynamicity varies among individual vowels, suggesting a more 

code-based component. In particular, the more dynamic lax vowels show greater spectral change 

in clear speech than the intrinsically less dynamic tense vowels (Assmann and Katz, 2005; 

Ferguson and Kewley-Port, 2007; Hillenbrand and Nearey, 1999; Leung et al., 2016). 

Articulatory studies have also revealed both code- and signal-based clear-speech 

modifications. For example, Tang et al. (2015), which examined visible articulatory movements 

in English vowel production using computational image analysis, has shown that talkers modify 

their speaking style to produce clear speech with exaggerated visual cues corresponding to code-

based articulatory features of different vowels. In particular, in clear compared to plain speech, 
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the results show greater horizontal lip stretch for front unrounded vowels and greater degree of 

lip rounding and protrusion for rounded vowels. On the other hand, signal-based modifications 

are shown by a larger jaw opening across vowels in clear relative to plain speech, which is 

probably a consequence of increased articulatory effort in general, as also claimed previously 

(Kim and Davis, 2014).  

In sum, these production studies have documented both signal-based and code-based changes 

in clear speech. Yet the question remains as to how the effects seen in these acoustic and 

articulatory measurements are linked to intelligibility. In particular, no acoustic or articulatory 

analysis has yet adopted the more comprehensive approach, as in the C-CuRE framework of 

McMurray and Jongman (2011), to ask how specific acoustic cues (as opposed to broad measures 

of clarity like vowel space area) contribute to perception, or how this may be impacted by other 

sources of variation.  

 

1.3.2 Linking clear-speech features to intelligibility 

Research relating clear-speech acoustic patterns to perception could be crucial in identifying the 

locus of the clear speech advantage as it can reveal which modifications most predict intelligibility 

gains. Such work is scarce.  

Lam et al. (2012) used regression analyses to directly relate acoustic features in clear speech 

to sentence intelligibility. In clear speech, increases in intelligibility were related to greater 

increases in the area of the tense vowel space, greater dynamic spectral changes for lax vowels, 

along with greater reduction in speaking rate and greater increases in intensity. Although not 

specifically targeting segment-level intelligibility, these findings indicate that enhanced 

intelligibility in clear speech may be associated with different acoustic cues depending on the 

features of different sound categories. 

Ferguson and Quené (2014) used Generalized Linear Mixed Modeling to relate their acoustic 

measurements to the intelligibility data reported in Ferguson (2004). Their results are generally 

in good agreement with those of Lam et al. (2012) in that a decrease in speaking rate, increase in 

F1 (due to greater mouth opening in an effort to increase intensity), and increase in the vowel 

space area all contributed to a clear speech intelligibility benefit. In addition, greater F1 and F2 

movement over the vowel nucleus in the clear production of the vowels /e, o, ʊ, u/ was also seen 

to enhance their intelligibility. Thus, like Lam et al, this suggests both signal and code-based 

modifications are important.  

In terms of articulation, studies using kinematic measures have shown positive correlations 

of articulation, acoustics with clear speech effects on intelligibility (Kim and Davis, 2014; Kim, 

Sironic, and Davis, 2011; Tasko and Greilick, 2010). For example, Kim et al. (2011) tracked the 

motion of facial markers during clear speech produced in quiet or in the presence of background 

noise (Lombard speech), and coupled this with tests of the audio-visual intelligibility of these 

productions in noise. Motion tracking results revealed a greater degree of articulatory movement 

in speech in noise (clear speech) than in quiet (plain speech), with the differences correlated with 

speech acoustics. Moreover, increased movement of the jaw and mouth (greater degree of 

opening) during clear speech translated to increased intelligibility, indicating that clear speech is 

also more visually distinct than plain speech. 

With the exception of sentence-level intelligibility (e.g., Kim et al., 2011), research has not 

examined the degree to which specific articulatory cues contribute to enhanced intelligibility in 

clear speech segments, nor is there robust evidence identifying signal- and code-based 

modifications in acoustic cues that lead to intelligibility gains. The gap in this area of work reveals 

the need for research to establish the link between specific articulatory and acoustic features used 

in clear-speech segmental productions and the impact of these features on the intelligibility of 

clear-speech segments. Critically, here by adopting an explicit computational model of perception 

(McMurray and Jongman, 2011), we can examine the impact of clear speech on the way in which 

multiple cues combine to yield perception.  

 

1.4 The present study 

The above-reviewed findings on AV clear-speech intelligibility indicate that the perception of 

clear-speech effects may depend on factors such as the saliency of the source of modifications 
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(acoustic and articulatory), perceptual weighting in auditory and visual modalities, and 

perceivers’ linguistic experience. However, research has not systematically examined the extent 

to which these inter-related factors collectively affect intelligibility, nor is it clear whether these 

modifications are global signal-based changes, or more phonetically specific, code-based 

changes. Thus, the current study addressed how speech style interacts with AV input modality 

and perceiver experience in the intelligibility of clear-speech segments, and what acoustic and 

articulatory modifications are responsible for these interactions.  

Specifically, the present study investigates AV perception of English tense and lax vowels in 

clear speech by native English and Mandarin (L2) perceivers. This study aims to isolate the effects 

of signal- and code-based acoustic and articulatory clear-speech modifications on the 

intelligibility of these vowels in two ways. First, we compare the patterns by native and non-

native listeners who may interpret signal- and code-level cues differently based on their native 

language experience. Second, we relate differences in identification to differences in both signal- 

and code-based cues measured from the acoustic and visual input. 

Tense and lax vowels were chosen as target stimuli due to their unique articulatory and 

acoustic characteristics in relation to clear-speech features. As noted previously (Leung et al., 

2016), features that mark plain-to-clear speech modifications and lax-to-tense vowel contrasts are 

similar, both involving increased duration, fundamental frequency (f0) and intensity, and more 

peripheral formant frequencies (associated with an expanded vowel space), as well as increased 

dynamic temporal and spectral changes (Cooke and Lu, 2010; Ferguson and Kewley-Port, 2002, 

2007; Ferguson and Quené (2014); Hazan and Baker, 2011; Kim and Davis, 2014; Krause and 

Braida, 2004; Lu and Cooke, 2008; Picheny et al., 1986). These similarities provide a unique test 

case to unravel the underlying mechanisms governing clear-speech production and perception 

based on how the same physical features may be utilized differently depending on different 

priorities needed for efficient communication.  

In terms of the interactive effects of speech style and input modality, first, we hypothesize 

greater overall intelligibility for vowels produced in clear speech relative to plain speech. This 

should be seen across tensity (tense vs. lax vowel stimuli) and modality (A vs. V) conditions. This 

is based on our previous findings of greater articulatory (jaw, lip) movements (Tang et al., 2015) 

as well as greater acoustic (temporal, spectral) changes (Leung et al., 2016) in plain-to-clear 

modifications for both tense and lax vowels. However, based on our findings of greater acoustic 

distinctions between tense and lax vowels in clear (relative to plain) speech, but similar 

articulatory plain-to-clear modifications for both tensity categories, we predict that the Speech 

Style × Input Modality interaction would be reflected in perception as well. In particular, code-

based acoustic modifications that result in greater tense-lax differences may enhance auditory 

intelligibility in clear speech, whereas articulatory modifications that do not differentiate tense 

and lax vowels should not provide a comparable benefit in the visual domain. 

Regarding the effects of linguistic experience, we recruited native Mandarin perceivers as the 

non-native group in order to test the signal- versus code-based hypothesis for clear speech, since 

unlike English, Mandarin does not have lax counterparts to its tense vowels and this difference 

poses difficulties for Mandarin native speakers in perceiving the tense and lax vowel distinctions 

in English (Jia, Strange, Wu, Collado, and Guan, 2006; Wang and Munro, 2004). Based on the 

previous findings of language-specific, code-based clear-speech effects in the auditory domain 

(Bradlow and Bent, 2002; Smiljanić and Bradlow, 2011), we predict greater clear-speech benefits 

for native English than for Mandarin perceivers, particularly for perception of the lax vowels that 

are unfamiliar to the Mandarin perceivers. However, in the visual domain, on the basis of the 

previous findings that non-native perceivers may utilize signal-based clear-speech enhancements 

(Fenwick et al., 2015) and that non-native perceivers generally rely more on the visual domain 

than native perceivers (Hazan et al., 2006; Wang et al., 2008), we expect Mandarin perception in 

the current study to be more affected by clear than plain speech (although the effects may be 

skewed if attention was paid to incorrect visual cues, Hazan et al., 2006; Kirchhoff and Schimmel, 

2005; Wang et al., 2008). 

Finally, we relate articulatory, acoustic, and perception data to determine the relative weight 

of each articulatory and acoustic cue in predicting perceiver performance. Extending the previous 

findings of positive correlations between specific articulatory and acoustic clear-speech 



Page 8 of 39 

modifications and improved overall sentence intelligibility (Ferguson and Kewley-Port, 2002; 

Kim et al., 2011), we predict similar positive correlations in segmental intelligibility. 

Furthermore, we expect enhanced clear-speech intelligibility to correlate with those articulatory 

and acoustic features used to make quantitative modifications, whereas we expect the features 

used to characterize phonemic categorical contrasts to correlate with identification of different 

vowels across speech styles. 

 

2.0 Methods 

 

2.1 Perceivers 

Twenty-one (19 female) native perceivers of Western Canadian English (aged 19-27, mean: 22) 

and 30 (18 female) non-native perceivers (aged 18-26, mean: 22) who had Mandarin as their first 

language (L1) were recruited from the undergraduate and graduate population at Simon Fraser 

University, Canada. The perceivers reported normal hearing, normal or corrected vision, and no 

history of speech or language disorders. 

The Mandarin perceivers were late, intermediate-level learners of English. According to a 

self-reported questionnaire, they initially started learning English as a second language (L2) at a 

mean age of 10 (SD: 3.7) in a classroom setting. They arrived in Canada at a mean age of 19 (SD: 

2.7) and had been residing in an English-speaking environment for 3.4 years on average (SD: 2.0) 

at the time of testing. The Mandarin perceivers reported that their daily use of English was 41% 

on average (SD: 20.5), and their standard English test scores were: 5.5-7.5 (IELTS) or 96-103 

(TOEFL). In order to establish that the Mandarin participants did have difficulty with the English 

vowel tensity distinctions (thus allowing the test of interactive effects of speech style and tensity), 

a screening procedure was included prior to the perception experiment, where participants were 

asked to produce the six target English words containing tense and lax vowels. Their productions 

in terms of the degree of tense-lax vowel distinction were assessed by a phonetically-trained 

native English listener on a scale of 1 to 5, with 1 meaning “no distinction at all” and 5 meaning 

“perfect, native-like distinction”. The mean rating was 2.9 (SD: 0.9).  

 

2.2 Items 

The stimuli included six English words: “keyed, kid, cod, cud, cooed,” and “could” spoken in 

plain and clear speech styles. These words carry three pairs of English tense and lax vowels (/i-ɪ/, 

/ɑ-ʌ/ and /u-ʊ/) based on previously established tense-lax categorization (e.g., Gopal, 1990; Lam 

et al., 2012; Leung et al., 2016). 

  

2.2.1 Talkers 

Eighteen (10 female) native speakers of Western Canadian English provided the audio-visual 

stimuli. From this pool, six talkers (3 female) whose productions contain the most contrastive 

visible articulatory features in plain versus clear speech were chosen for the current study, based 

on our previous articulatory analysis (Tang et al., 2015).  

The talkers (aged 17-30, mean: 22) were recruited from the undergraduate and graduate 

population at Simon Fraser University. Their English dialect exhibits the /ɑ/ and /ɔ/ merger 

(Clopper, Pisoni, and de Jong, 2005), thus they produced the vowel in “cod” as the target vowel 

/ɑ/ of this study. The talkers indicated no history of speech or language impairment. 

 

2.2.2 Elicitation of plain and clear stimuli 

The plain and clear stimuli were elicited using a simulated interactive computer speech 

recognition program established previously (Maniwa et al., 2009; Tang et al., 2015; Leung et al., 

2016). On each trial, one of the six English words was displayed on a computer screen. The talker 

was instructed to produce the word naturally, eliciting a neutral, ‘plain’ speech style. Then, the 

program would “guess” and indicate on the screen what they produced. If the guess was incorrect, 

the program would instruct the talker to repeat the stimulus as clearly as possible (thus eliciting 

clear style productions). 

Audio-video recordings were acquired in a sound-attenuated booth in the Language and Brain 

Lab at Simon Fraser University. Front-view videos were captured with a Canon Vixia HF30 
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camera at a recording rate of 29 fps. Audio recordings were made simultaneously using Sonic 

Foundry Sound Forge 6.4 at a sampling rate of 48 kHz, with a Shure KSM microphone placed at 

a 45-degree angle, about 20 cm away from the talker’s mouth.  

Each word was presented three times in a random order, resulting in three elicitations of each 

plain-clear pair of productions. Further, all audio and video stimuli were evaluated by two 

phonetically trained native speakers of Canadian English to ensure the accuracy of pronunciation 

and quality of recordings. All productions were judged as correct productions of the target words. 

 

2.2.3 Editing of stimuli 

Three sets of stimuli for the perceptual experiments were created. Stimuli varied in the three 

presentation conditions: audio-only (AO), audio-visual (AV) and visual-only (VO). The AO 

stimuli were excised from the microphone audio recordings as individual word clips of two 

seconds each, using Audacity v.2.1. The AV stimuli were created by replacing the on-camera 

audio track with the high-quality audio recordings from the microphone, and the VO stimuli were 

created by removing the audio track from the video recordings, both using Adobe Premier Pro 

CC 2014. Each AV or VO word clip lasts four seconds to ensure that both mouth opening and 

closing are captured. To increase the difficulty level for the AO and AV conditions (thus inducing 

sufficient errors for comparisons between plain and clear speech), the audio stimuli were 

normalized at 60 dB and were embedded in one of three stretches of cafeteria noise at a level of 

75 dB (i.e., -15 dB signal-to-noise ratio or SNR).  

Pilot Experiment. This SNR level was empirically established by a separate pilot study, with 

the target error rate set at 30% based on similar previous studies (Gagné et al., 2002; Wang et al., 

2008). In this pilot, the six target words were each embedded in six noise levels (SNRs of -5, -10, 

-13, -15, -17 and -19 dB). In total, this pilot experiment tested 144 audio stimuli (6 talkers × 2 

styles × 2 words × 6 SNRs). Within a given cell (talker × style × word), the specific audio 

recording was randomly selected from the three elicitations in the production task described 

earlier. These stimuli were then excluded from the main perception experiment to ensure that any 

idiosyncrasies of these particular items (and the SNR calibration done on them) did not bias the 

results of the primary experiment. This left two elicitations in each that were available for the 

main experiment.  

To keep the pilot experiment short (30 minutes), each listener responded to two different 

words were selected from each talker, but all six target words were used across talkers. Eleven 

native Canadian English listeners (9 female) who did not participate in the subsequent perception 

experiment took part in this pilot study. On each trial, participants indicated which word they had 

heard from among the six alternatives displayed on the screen. The target error rate was obtained 

at a -15 dB SNR.  

 

2.3 Procedures 

The perception experiment was presented using Paradigm (Perception Research Systems, 2007). 

Perceivers were tested in a sound-attenuated room. Each perceiver was seated in front of a flat-

screen monitor. Auditory stimuli were normalized to 70 dB, and presented binaurally over 

headphones at a comfortable listening level. Visual stimuli were presented in full color video 

showing a front view of the speaker’s face, at an image size of 15 × 22 cm (width by height), 

where the viewing distance was approximately 70 cm. For AO and VO conditions, only one 

stimulus channel (audio and video, respectively) was presented to participants, while for AV 

conditions the above two channels were presented simultaneously. A six-alternative forced-choice 

identification task was used. On each trial, a stimulus was presented, and participants were asked 

to identify what they had perceived from among the six alternatives (“keyed, kid, cod, cud, cooed, 

could”) displayed on the screen. They were given up to four seconds on each trial to indicate their 

response, which was registered via mouse click on one of the six words shown on the screen. 

A familiarization session was administered prior to the main testing session. First, each target 

word was presented auditorily without noise to ensure that the perceivers could recognize the 

target words. Then, perceivers went through the three stimulus modalities to be familiar with the 

task, each of which included two example trials containing stimuli that were not used in the testing 

sessions.  
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The main perception experiment contained stimuli from one of the elicitations not used in the 

SNR pilot study. Each plain and clear production from each talker was presented three times in a 

random order in each A/V modality, resulting in a total of 648 stimuli (6 talkers × 2 styles × 3 

stimulus modalities × 6 words × 3 repetitions). Stimuli were presented over two testing sessions 

on two consecutive days, each lasting 60-80 minutes, including the main testing session as well 

as task instructions, practice trials, and breaks. Each testing session contained three blocks and 

each block had one of the three stimulus modalities so that the perceivers went through all three 

stimulus modalities in one testing session. All blocks had an equal number of trials (108). The 

order of presentation was randomized and the order of blocks (stimulus modalities) was counter-

balanced across participants. 

 

2.4 Acoustic and articulatory analyses 

In order to relate perceptual patterns to specific speech parameters from audio and visual input, 

acoustic and visible articulatory analyses were performed on the audio and video recordings. The 

acoustic measurements (i.e., acoustic cues) include vowel duration, the frequencies of the first 

three formants at vowel midpoint, spectral change and spectral angle (Leung et al., 2016). The 

articulatory measurements (i.e., visual cues), conducted on videos of talkers’ faces using 

computer-vision and image processing techniques, include peak of horizontal and vertical lip 

stretch, vertical jaw displacement and eccentricity of lip rounding (Tang et al., 2015). See Sections 

3.3.1-3.3.2 for a review of the above parameters, originally presented in Leung et al. (2016) and 

Tang et al. (2015), as a function of vowel and speech style. 

 

3.0 Results 

First, English and Mandarin perceiver identifications of tense and lax vowels were analyzed 

separately for overall accuracy as a function of speech style and stimulus modality. 

Accompanying the overall accuracy analysis, we also analyzed the accuracy of identifying 

specific features (among tensity, height, backness, and rounding distinctions) to understand what 

specific cue enhancements or distortions underlie the overall effects of clear speech on tense/lax 

vowel perception. Finally, acoustic and visual parameters from two prior studies (Leung et al., 

2016; Tang et al., 2015, respectively) were used in both inferential and predictive models of 

English perceiver behavior to determine the relative contribution of information from auditory 

and visual modalities to clear and plain speech perception. 

 

3.1 English perceivers 

Figure 1 shows the accuracy of English perceivers as a function of modality, speech style, and 

stimulus vowel tensity. Overall, this shows a clear speech advantage in all conditions except when 

lax vowels are presented in the visual-only modality. That is, when only visual information is 

available, clear speech presents a disadvantage to lax vowel identification, a disadvantage which 

will later be shown to derive from the conflict between speech style modifications of articulations 

and those used to cue the tense-lax distinction in English. 
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Figure 1. Identification accuracy of English perceivers by speech style (clear, plain) and stimulus vowel 

tensity (tense, lax) in audio-only (AO), audio-visual (AV), and visual-only (VO) modalities. Error bars 

represent ±2 standard errors about the mean. 

 
This pattern of results was analyzed numerically in a logistic mixed-effects model predicting 

accuracy (correct = 1; incorrect, including non-responses, = 0). Fixed effects were dummy coded 

and included Modality (AV [reference], AO, VO), Style (plain [reference], clear), and Stimulus 

Vowel Tensity (tense [reference], lax). Because effects were dummy codes, the significance of 

the individual regression tests the hypothesis that a given level of one of the factors (e.g., AO of 

the modality factor) significantly differs from the reference level. This allowed us to conduct a 

number of what would normally be post-hoc tests without the need for separate models.   

Random effects were chosen by forward model selection to find the most complex random 

slope structure necessary to fit the data (c.f., Matuschek, Kliegl, Vasishth, Baayen, and Bates, 

2017; Bates, Maechler, Bolker, and Walker, 2015). The resulting model included a random 

intercept for Subject, a random slope for Modality on Subject, and a random intercept for Item 

(see Equation 1 for model in lme4 syntax).1 Finally, while a random effect for Talker was tested, 

it was not included in the final model as it did not yield any substantive changes in the results, 

and is an effect which is already reflected in the Item random effect that refers to the exact items 

(talker and SNR-specific) presented in the experiment.  

 

Accuracy ∼ Modality * Style * Tensity + (Modality | Subject) + (1 | Item)                   (1) 

 

As several factors included more than two levels, the significance of main effects and interactions 

were assessed by comparing models with and without the relevant factor. 

This model showed a three-way interaction between Modality, Style, and Tensity (Figure 1) 

(χ2(2) = 18.1, p < 0.001). This interaction derives from a significant clear speech advantage in 

 
1 Attempts at introducing additional complexity in the random effects structure, such as including additive 

effects of Style and Tensity, did not improve model fit, and random slopes for interaction effects resulted 

in model convergence failures, due in part to the fact that the model could completely predict performance 

in certain cells from the fixed and random effects (a marker of overfitting). 
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audio-only for tense vowels (β = -0.508, CI = [-0.8, -0.2], z = -3.851, p < 0.001) and lax vowels 

(β = -0.445, CI = [-0.7, -0.2], z = -3.264, p = 0.001), while for audio-visual stimuli only tense 

vowels showed a clear speech advantage (tense: β = -0.522, CI = [-0.9, -0.1], z = -2.622, p = 

0.009; lax: β = -0.280, CI = [-0.7, 0.1], z = -1.347, p = 0.178), and for visual-only stimuli the clear 

speech advantage for tense vowels (β = -0.629, CI = [-0.8, -0.4], z = -6.210, p < 0.001) is inverted 

for lax vowels, which show a significant disadvantage for clear speech (β = 0.398, CI = [0.2, 0.6], 

z = 4.120, p < 0.001). See Table A1 in the Appendix for the full regression table. 

To further dissect the more phonologically specific advantages and disadvantages of clear 

speech, we recoded accuracy in terms of the features [tense], [back], [high], and [round]. For 

example, in measuring height accuracy, any response of /i, ɪ, u, ʊ/ was considered accurate if the 

stimulus was a high vowel. In contrast, if the listener responded /ɑ, ʌ/ for a high vowel, this was 

inaccurate. In addition to providing greater granularity to the analysis of perceiver responses, this 

decomposition serves to verify that the assumed source of the overall accuracy pattern in a conflict 

between articulatory modifications in clear speech and those distinguishing tense and lax vowels 

is in fact due to vowel tensity misperceptions, and not due to misperceptions between other vowel 

pairs representing non-tensity contrasts.  

Figure 2 plots feature accuracy by modality, stimulus vowel tensity, and speech style. The 

figure confirms the assumption that clear speech modifications affected the perception of tensity, 

as the primary Tensity × Style interaction that emerges visually in Figure 2 is in the bottom panel 

of column 1 (tensity perception in the VO modality). Here we find a substantial disadvantage for 

clearly spoken lax vowels, meaning that clear speech causes lax vowels to be misperceived as 

tense vowels, whereas lax vowels are accurately perceived in plain speech. 

 

 
Figure 2. Identification accuracy of English perceivers by feature ([tense], [back], [high], [round]), speech 

style (clear, plain) and stimulus vowel tensity (tense, lax) in audio-only (AO), audio-visual (AV), and visual-

only (VO) modalities. Error bars represent ±2 standard errors about the mean. 

 
We next conducted four statistical analyses, one for each feature. This used a model similar 

to the overall accuracy model: a logistic mixed-effects regression predicting feature accuracy 

from Modality, Style, and Stimulus Vowel Tensity. This model used random intercepts for 

Subject and random slopes were included according to the forward model selection procedure 

described above. For all four analyses this yielded the same random slope for Modality, but not 

for Style or Tensity. Thus, all feature accuracy models are formulated according to Equation 1. 
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We started by examining the [tense] feature (the primary feature of interest). As in the overall 

accuracy model, there was a significant interaction between Modality, Style, and Stimulus Vowel 

Tensity (χ2(2) = 22.7, p < 0.001). This effect derives primarily from the clear speech disadvantage 

for lax vowels presented in VO (β = 1.180, CI = [1.0, 1.4], z = 10.18, p < 0.001), which runs 

counter to the significant advantage for clearly spoken tense vowels in the visual-only modality 

(β = -0.646, CI = [-0.8, -0.4], z = -6.338, p < 0.001). For the audio-only modality, while clear 

speech does not yield a disadvantage for lax vowels as it does in VO, it yields only a modest 

advantage (β = -0.381, CI = [-0.8, 0.0], z = -1.993, p = 0.046) as compared with that for tense 

vowels (β = -0.883, CI = [-1.2, -0.6], z = -5.243, p < 0.001). Finally, in AV, clear speech provides 

an advantage for tense vowels (β = -0.548, CI = [-1.0, -0.1], z = -2.664, p = 0.008), but not for lax 

(β = 0.181, CI = [-0.3, 0.7], z = 0.717, p > 0.1). In other words, clear speech appears to induce a 

bias to perceive more tense vowels overall. This bias results in greater tensity errors on lax vowels 

and fewer tensity errors on tense vowels. 

Next, we examined the [back] feature. Here, no significant interaction between Modality, 

Style, and Tensity was observed (χ2(2) = 4.4, p > 0.1), though there were significant two-way 

interactions between Modality and Style (χ2(4) = 21.3, p < 0.001), Modality and Tensity (χ2(4) = 

20.5, p < 0.001), and Style and Tensity (χ2(3) = 8.2, p = 0.042). From Figure 2 it can be seen that 

these interactions primarily derive from the visual-only modality, where both clear speech effects 

and vowel tensity effects are more pronounced than in AO or AV. Specifically, in audio-only 

there was a clear speech advantage for both tense (β = -0.471, CI = [-0.8, -0.1], z = -2.576, p = 

0.010) and lax (β = -0.452, CI = [-0.9, 0.0], z = -2.117, p = 0.034) vowels. In AV, backness 

accuracy was at ceiling, so no significant clear speech effects could be measured (ps > 0.2). 

Finally, in VO, accuracy on the [back] feature was significantly greater for both clearly spoken 

tense (β = -1.707, CI = [-2.3, -1.1], z = -5.713, p < 0.001) and lax (β = -0.922, CI = [-1.2, -0.6], z 

= -6.083, p < 0.001) vowels. 

Our third analysis examined [height]. Height errors were generally uncommon, though when 

perceivers were presented with only visual information there were predictable effects of clear 

speech (namely, that the baseline lower accuracy on lax vowels in plain speech, relative to tense 

vowels, is largely remedied in clear speech). Overall, model comparisons revealed no significant 

Modality x Style x Tensity interaction (χ2(2) < 1), nor a significant interaction between Modality 

and Tensity (χ2(4) = 5.2, p = 0.263). However, there were marginal interactions between Modality 

and Style (χ2(4) = 8.7, p = 0.070) and Style and Tensity (χ2(3) = 6.9, p = 0.077). The source of 

this result is evident in Figure 2 in the bottom panel of column 3, and in conditional effects of 

clear speech implied by the model. For instance, while there is no significant effect of clear speech 

on accurate perception of vowel height in AO (tense: β = 0.218, p > 0.1; lax: β = -0.334, CI = [-

0.7, 0.1], z = -1.650, p = 0.099) and no reliable effects in AV due to perceivers’ ceiling 

performance, in VO clear speech provides a significant advantage for both lax vowels (β = -0.819, 

CI = [-1.1, -0.6], z = -6.303, p < 0.001) and tense vowels (β = -0.487, CI = [-0.8, -0.2], z = -3.184, 

p = 0.002), though the effect on lax vowel height perception is more pronounced.  

Finally, we examined perception of the [round] feature. Rounding perception was robust 

across modalities, with no significant Modality × Style × Tensity interaction (χ2(2) = 2.7, p > 0.1), 

nor any significant two-way interactions (ps > 0.3). The only relevant effect for the present study 

was an overall significant effect of speech style (χ2(6) = 16.0, p = 0.014). However, from Figure 

2 and model estimates (see Table A1 in the Appendix) this effect appears to be largely due to 

restricted clear speech advantages for lax vowels in AO (β = -0.349, CI = [-0.65, -0.05], z = -

2.263, p = 0.024) and AV (β = -1.02, CI = [-1.7, -0.3], z = -2.882, p = 0.004). 

In summary, clear speech generally showed benefits for vowel perception along several 

featural dimensions, particularly for lax vowels in backness and height. However, accurate 

perception of vowel tensity is dependent on both modality and speech style, with clear speech 

modifications confounding cues to lax vowels such that either benefits of clear speech disappear 

for lax vowels (as in AO and AV), or clear speech effects reverse and become directly 

disadvantageous to the perceiver (lower accuracies relative to plain speech), as seen in visual-

only presentation. 
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3.2 Mandarin perceivers 

Figure 3 shows results for Mandarin perceivers. The pattern of accuracy for tense vowel stimuli 

largely mirrored those for English perceivers. However, for lax vowels there were two main 

discrepancies. First, Mandarin perceivers appeared to rely more on visual information than 

English perceivers, as both VO and AV modalities show disadvantages for clear speech. Second, 

the clear speech benefit in audio-only that was present for English perceivers disappears. 

  

 
Figure 3. Identification accuracy of Mandarin perceivers by speech style (clear, plain) and stimulus vowel 

tensity (tense, lax) in audio-only (AO), audio-visual (AV), and visual-only (VO) modalities. Error bars 

represent ±2 standard errors about the mean. 

 
Statistical model analyses of Mandarin perceiver accuracy followed those for English perceivers 

and used a similar mixed effects model as Equation (1), but with the addition of a random slope 

for Stimulus Vowel Tensity on Subject (see Table A2 in the Appendix for the full model 

specification). 

As with English perceivers, the Mandarin group exhibited a significant Modality × Style × 

Tensity interaction (χ2(2) = 27.4, p < 0.001). Clear speech yielded significant advantages for tense 

vowels across modalities (AO: β =-0.666, CI = [-0.8, -0.5], z = -7.637, p < 0.001; AV: β = -0.813, 

CI = [-1.0, -0.6], z = -8.157, p < 0.001; VO: β = -0.929, CI = [-1.1, -0.8], z = -11.76, p < 0.001), 

while lax vowels were more accurately perceived in plain speech in AV (β = 0.655, CI = [0.4, 

0.9], z = 5.830, p < 0.001) and VO (β = 0.585, CI = [0.4, 0.7], z = 7.369, p < 0.001). No significant 

difference between clear and plain speech was found for lax vowels in audio-only (β = 0.019, p > 

0.1). Thus, for Mandarin perceivers the information from visual cues to clearly spoken lax vowels 

appears to have a greater effect on their vowel identification, as both AV and VO modalities 

showed the disadvantage that English listeners only showed in visual-only. 

Regarding featural accuracy, Figure 4 shows Mandarin perceiver accuracy on [tense], [back], 

[high], and [round] features by modality, speech style, and stimulus vowel tensity. The pattern of 

results is consistent with the general conclusion from the English perceivers; namely, the 

interaction between speech style and stimulus vowel tensity is primarily driven by direct tensity 
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errors, though unlike the English perceivers this interaction is evident in all three modalities. 

Again, we conducted separate analyses for each feature. 

 

 
Figure 4. Identification accuracy of Mandarin perceivers by feature ([tense], [back], [high], [round]), 

speech style (clear, plain) and stimulus vowel tensity (tense, lax) in audio-only (AO), audio-visual (AV), 

and visual-only (VO) modalities. Error bars represent ±2 standard errors about the mean. 

 
Overall, the [tense] accuracy model showed a significant interaction between Modality, Style, 

and Tensity (χ2(2) = 36.8, p < 0.001). This was driven by a significant clear speech advantage for 

tense vowels in AO (β = -0.859, CI = [-1.1, -0.7], z = -8.765, p < 0.001), AV (β = -0.932, CI = [-

1.1, -0.7], z = -8.941, p < 0.001), and VO (β = -0.976, CI = [-1.1, -0.8], z = -12.12, p < 0.001), but 

a clear speech disadvantage for lax vowels in AV (β = 0.784, CI = [0.5, 1.0], z = 6.445, p < 0.001) 

and VO (β = 1.187, CI = [1.0, 1.4], z = 12.82, p < 0.001), and no effect of speech style for lax 

vowels in audio-only (β = 0.148, CI = [-0.1, 0.4], z = 1.408, p > 0.1). Therefore, the general pattern 

of conflict between clear speech and lax vowel production in the overall accuracy model and in 

Figure 3 is directly linked to clear speech-induced confusions between tense and lax vowel pairs. 

All other featural errors, as reviewed below are minimal and hardly modulated by speech style. 

Mandarin perceiver accuracy on vowel backness showed a significant Modality × Style × 

Tensity interaction (χ2(2) = 6.5, p = 0.038), with a clear speech advantage for both tense and lax 

vowels in AO (tense: β = -0.394, CI = [-0.7, -0.1], z = -2.953, p = 0.003; lax: β = -0.942, CI = [-

1.3, -0.6], z = -5.302, p < 0.001) and VO (tense: β = -0.894, CI = [-1.3, -0.5], z = -4.240, p < 0.001; 

lax: β = -0.638, CI = [-0.9, -0.4], z = -5.311, p < 0.001). Accuracy on the [back] feature was at 

ceiling in AV. 

Vowel height was near-ceiling in audio-only and audio-visual modalities, with the only 

significant effect of speech style arising for lax vowels in VO (β = -0.530, CI = [-0.7, -0.3], z = -

5.098, p < 0.001). And thus, while there are significant interactions between Style and Modality 

(χ2(4) = 10.5, p = 0.032) and Style and Tensity (χ2(3) = 11.0, p = 0.012), these effects are largely 

driven by the single clear speech benefit for lax vowels in visual-only.  

Finally, Mandarin perceiver accuracy on vowel rounding was unaffected by speech style 

when visual information was present (i.e., in AV and VO), but in audio-only there was a clear 

speech advantage for both tense (β = -0.288, CI = [-0.5, -0.1], z = -2.455, p = 0.014) and lax (β = 

-0.257, CI = [-0.5, 0.0], z = -2.052, p = 0.040) vowels, resulting in a minor overall effect of speech 
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style (χ2(6) = 12.7, p = 0.048), though Figure 4 and the above numerical analysis confirm that this 

effect is restricted to AO. 

In summary, Mandarin perceivers exhibit many of the same vowel perception patterns as 

English listeners, particularly with respect to vowel height and backness, and while they show a 

parallel clear speech disadvantage for lax vowels in VO, the extension of this interaction to AV 

and AO modalities indicates that the cues Mandarin perceivers rely on (particularly in the context 

of visual information) are less robust to changes in speech style, and thus may be more closely 

utilizing the same dimensions as those manipulated in clear speech. 
 

3.3 Predicting perceptual patterns from acoustic and visual cues 

The next set of analyses aimed to link the acoustic and visual measures of individual vowels to 

the pattern of perceptual data, and to provide a more comprehensive window on the effect of clear 

speech on the acoustics by looking across multiple cues, and by considering the impact of clear 

speech relative to other factors such as talker differences. The stimuli used here were part of a 

corpus of vowels that were collected, measured, and analyzed in two prior studies (Leung et al., 

2016; Tang et al., 2015). In Section 3.3.1 we model audio-only perception, and in Section 3.3.2 

visual-only. Audio-visual perception cannot be modelled in the present study because the listener 

results, which serve as a benchmark against which model predictions are evaluated, were at ceiling 

and therefore errors were too sparse to discern any reliable patterns.  

Analyses were conducted in four stages. These followed different aspects of the C-CuRE 

framework to address three distinct questions. First, we started with a review of the effect of clear 

speech on each cue found in our prior studies. Second, we sought to understand the overall 

contributions of different factors to the variance in each cue (Variance models). For this, we 

conducted a new analysis of this data to determine how much variance speech mode contributes 

over and above other factors.   

Third, we asked what cues listeners were using, and the relative cue weight of each cue. In 

these, inferential models, listener responses were predicted from a multinomial logistic regression 

relating the measured cue-values to the likelihood of choosing each of the six vowel categories. 

We then assessed the relative weighting of each cues examining changes in model performance 

when a given cue was included or excluded. Further, we allowed each cue to interact with speech 

style to determine if cues were used differently depending on the speech mode.   

Fourth, we used a similar model to predict perceptual performance from the combination of 

cues (predictive model). In this stage we constructed predictive models. These sought to mirror 

as closely as possible the listener’s task in the experiment, but without access to any of the 

listeners’ results. The predictive models, as in McMurray and Jongman (2011), were meant as a 

form of ideal observer analysis to determine how much information is in the signal (across cues) 

to potentially support categorization, and to determine to what extent errors shown by the listeners 

may reflect ambiguity in the statistical structure of the categories in the language. Here, models 

are evaluated by the degree to which they exhibit the same pattern of accuracy across conditions. 

In particular, adequate predictive models should mirror listener response patterns in showing a 

clear speech advantage for both tense and lax vowels in audio-only, while showing a tensity-

dependent reversal in visual-only with model accuracy being better in plain than in clear speech 

for lax vowels, in contrast with tense vowels, which should retain the clear speech advantage.  

It was unclear a priori whether listeners are best modelled as if they are using raw cue values, 

or if they may be using cues whose values have been compensated for talker. Thus, both 

inferential and predictive models were conducted separately with two classes of cues as predictors 

of the vowel (either the perceived vowel in the inferential models or the produced vowel in the 

predictive models). First, we examined the raw cues as predictors of identification. Second, we 

examined the same cues after compensating for talker (following the C-CuRE approach of 

McMurray and Jongman, 2011). By examining different cue types, we aimed to extend McMurray 

and Jongman’s (2011) findings on fricative perception to several new conditions: a different 

phonetic system (tense/lax vowels), different modalities, and different speech styles.  
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3.3.1 Audio-only models 

Summary of Phonetic Analyses. Our prior phonetic study on the acoustic characteristics of 

these tokens revealed significant overall expansions of the vowel space in clear speech. There was 

also significant vowel lengthening, though tense and lax vowels were differentially impacted by 

such influences of speech style (Leung et al., 2016). For instance, tense vowels displayed greater 

lengthening than lax vowels, with this set further distinguished according to height (high vowels 

exhibiting greater lengthening in clear speech).  

Regarding formant frequencies, clear vowels were produced with more peripheral formant 

patterns than plain vowels. The vowels showing the greatest influence of speech style were the 

following. The high front lax vowel /ɪ/ had a higher F2 and F3 in clear speech than in plain speech, 

indicating that clear /ɪ/ was more fronted and less rounded than plain /ɪ/. Clear low vowels showed 

higher F1 than their plain counterparts; further, the low tense vowel /ɑ/ had a lower F2 in clear 

than in plain speech, the above two results indicating greater tongue body retraction and lowering 

in clear speech. Clear rounded vowels /u, ʊ/ had a lower F2 than their plain counterparts, reflecting 

front cavity expansion in clear speech consistent with either tongue retraction, lip protrusion, or 

both.  

Finally, a measure of vowel-inherent production dynamics, spectral change, showed a 

significant decrease in the high tense vowel /i/, while lax back vowels /ʌ/ and /ʊ/ became more 

dynamic in clear relative to plain speech.  

More relevant to the impact of speech style on accuracy of identification in auditory 

perception, however, is the relative separation between tense-lax vowel pairs in clear versus plain 

speech. Leung et al. (2016) found that while the relative acoustic difference between tense and 

lax vowels increased in clear speech, for a number of cues and vowel pairs the opposite pattern 

was obtained, consistent with the potential conflict between global clear speech modifications and 

gestural distinctions between tense and lax vowels.  

The relative difference in F1 between tense and lax vowels reduced in clear speech relative 

to plain for the pairs /i, ɪ/ and /ɑ, ʌ/, in both cases due primarily to changes in lax vowel height in 

the direction of the tense counterpart (i.e., lowering for /ʌ/, raising for /ɪ/). F2 and F3 only showed 

a clear speech reduction in tensity distinctions for the high front vowels, again due to movement 

of /ɪ/ toward /i/ in clear speech. Leung and colleagues posited such effects for the high front 

vowels could be due to /i/’s extreme peripheral position not permitting much further raising or 

fronting in clear speech (see Granlund et al., 2012, for further discussion of this argument).  

Regarding dynamic formant measures, differences in spectral change in tense-lax pairs 

consistently increased in clear speech, with such increases primarily due to greater spectral change 

observed in clearly spoken lax vowels. Finally, vowel duration generally increased for tense 

vowels and decreased for lax vowels in clear speech, resulting in greater separation between tense-

lax pairs and therefore greater predicted accuracy on tensity perception (due to duration) in clear 

speech. No significant changes in fundamental frequency due to speech style were observed, 

while clearly spoken vowels were generally louder than their plain counterparts, though only by 

an average of 1 dB. For summary statistics on the acoustic characteristics clearly and plainly 

spoken tense and lax vowel stimuli in this study, see Table B1 in the Appendix. 

Variance Models. We first sought to understand the relative contribution of clear speech to 

each acoustic cue in the context of other factors that may play a role. To this, we extended the 

analyses of Leung and colleagues by conducting a series of hierarchical regressions to identify 

the variance in each cue that was associated with several factors. These models used eight acoustic 

cues measured in Leung et al. (2016)—F1, F2, F3, spectral change (SC), spectral angle (SA), 

intensity (Amp), fundamental frequency (f0), and word duration (Dur).2  

 
2 Of the cues investigated, intensity is potentially compromised in the present study due to the fact that all 

stimuli were amplitude-normalized prior to their presentation to listeners. However, this does not mean that 

all effects of intensity differences by tensity and style have been eliminated, as more intense vowels should 

also show an amplification of formant frequencies that is less affected by global amplitude normalization. 

Nevertheless, this manipulation should be kept in mind when interpreting the intensity cue in the model. 
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In these regressions (c.f., McMurray and Jongman, 2011; Jongman and McMurray, 2017), 

the cue value of each token was the dependent variable, and predictors included the talker, vowel 

tensity, and speech style. This was a standard linear regression, and the predictor values were 

dummy coded. Each set of predictors was entered into the model as a whole (e.g., all the dummy 

codes for talker), and each level of the model added a new set of codes (e.g., all the code for vowel 

tensity), along with those of the prior model. Talker was added first, followed by tensity, followed 

by mode. After each model, we the unique variance was extracted as the difference in R2 between 

consecutive models. 

 

 
Figure 5. Acoustic parameter definitions and relative variance accounted for by Talker, Tensity, and Style, 

where tensity effects are considered in addition to variance already captured by talker differences, and 

style effects derive from the further variance explained by an interaction between Style and Tensity. 

 
Figure 5 presents the unique variance in that parameter attributable to each factor, and 

demonstrates that variation in raw cue values is primarily due to differences between talkers and 

vowel tensity, with speech style differences only accounting for substantial additional variance in 

duration. While this pattern may appear to be in conflict with Leung et al. (2016) who reported 

effects of speech style (both main effects and as interactions with vowel tensity), we note that 

Figure 5 addresses a different question. Namely, it asks what proportion of the total variation in 

vowel tokens can be attributed to different sources in a hierarchical manner, first accounting for 

talker differences, then vowel tensity, then speech style. This approach was taken because it is 

more relevant to the problem perceivers are tasked with. Finally, we should note that while the 

variance analysis is informative as to the general structure of variance in acoustic cues, it remains 

distinct from the analysis of cue contributions in the inferential and predictive models below, as 

it considers each cue independently, with no optimization of cue weights in the prediction listener 

responses (in the case of the inferential model) and vowel categories (in the case of the predictive 

model).  
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Inferential Models. The goal of the inferential models was to identify the relative contribution 

of each cue, and the impact of speech style on their utility.   

These were done by training a series of multinomial logistic regression models to predict 

listener vowel choices (6AFC) from the acoustic cues described previously. We identified the 

unique contribution of individual cues by measuring changes in model performance when a given 

cue is excluded from the model. We assessed the relative impact of speech style on the predictive 

power of each cue by examining changes in model performance when an interaction between a 

given cue and speech style is added to the baseline model with only main effects of each cue. 

Separate models were trained on both raw and talker-compensated cues.  

We started by fitting a baseline model. Here, the listener’s response on each trial was the 

dependent variable and the reference category was /i/. The predictors included the eight cues as 

main effects, and a dummy-coded effect of listener. Predictors were z-scored to improve model 

convergence, though we should note that this transformation has no substantive effect on the 

outcome. We further note that multinomial logistic models have no way to account for repeated 

measures by listener (a mixed effects implementation is not yet available); our approach of 

including listener as a fixed effect is merely to capture overall listener biases in category choice. 

Thus, these models are not intended to make strong inferential claims. Rather, we use them 

descriptively to evaluate the relative contribution of each cue. 

From the baseline model we computed model fit as the model’s accuracy on the data on which 

it was trained, both as a whole and separately for the tense/lax contrast within each of the three 

modalities studied. Next, we refit the model, dropping each cue in turn to examine the change in 

accuracy when that cue was lost. This was meant to address our first question about the relative 

importance of each cue. Next, we added interaction terms for the interaction of speech style with 

each cue. These were added one by one and compared to the baseline model to determine whether 

listeners used each cue differently in clear speech. 

Finally, this whole procedure was repeated using talker-compensated cues as the inputs to 

both models. To perform talker compensation, we ran a series of linear regressions that were 

similar to the variance models. Here, the cue value of each token was predicted from the talker (a 

set of dummy codes; vowel tensity and mode were not included as these were factors we wanted 

to investigate). We then saved the residual (the difference from prediction) as the new 

“compensated” cue value, after removing the effect of talker. These were then be used as 

independent variables in the baseline and second order models.  

Results of the inferential models are shown in Table 1, which is organized as follows. In the 

first line, baseline model results are shown for raw cues (left half) and talker-compensated cues 

(right half). In this model, the eight cues are modelled additively, without any potential 

interactions. The next block of rows presents changes in model performance (relative to baseline) 

when each cue was excluded. Here, the utility of a cue should be indicated as a decrease in 

accuracy, or an increase in the Deviance statistic (D). Finally, the third block shows changes in 

model performance due to inclusion of an interaction of speech style with each cue. For example, 

in the F1 row in the final block, values represent differences between a model including an F1  

Style interaction alongside the other seven cues (without an interaction), and the baseline model 

that has no interactions. Thus, if speech style interacts with a cue, models in the third block should 

show an increase in model performance relative to baseline (simply due to changes in the size of 

the predictor set), or a decrease in the deviance statistic. 
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 Raw Cues   Talker-Compensated Cues 

Baseline D  Acc.   /i, ɪ/  /ɑ, ʌ/  /u, ʊ/    D  Acc.  /i, ɪ/  /ɑ, ʌ/  /u, ʊ/  

 4974  73.5  94.0  89.2  82.9    5006  73.2  94.6  88.7  82.0  

 
Change Relative to Baseline Due to Dropped Cues 

F1  1916  -12.4  -11.7  -0.8  -4.9    1222  -7.2  -3.6  -2.1  -1.9  

F2  1050  -7.5  0.2  -20.6  0.1    778  -6.1  -0.2  -15.5  0.0  

F3  108  0.0  -0.4  0.2  0.1    41  -0.6  -0.5  -0.7  -0.2  

SC  313  -1.7  -1.8  -0.4  0.0    292  -1.5  -2.7  0.1  0.6  

SA  214  -1.3  -2.3  -0.6  1.0    287  -2.2  -2.4  -0.4  0.0  

Int.  206  -1.1  -3.3  -0.4  0.1    34  -0.2  -0.5  0.0  0.1  

f0  813  -5.9  -8.3  -4.3  -0.5    78  -0.3  0.2  -1.0  -0.3  

Dur.  132  -0.4  -0.7  -0.3  -0.1    65  -0.6  -0.2  -0.2  -0.4  

 
Change Relative to Baseline Due to Added Interaction of Cue with Style 

F1 -56  0.6  0.8  0.1  0.4    -102  0.6  0.0  0.3  1.3  

F2 -34  0.6  0.7  0.2  0.5    -89  0.7  0.3  0.3  1.1  

F3  -41  0.4  0.6  -0.1  0.6    -95  0.5  0.2  0.2  0.9  

SC  -33  0.4  0.6  -0.1  0.6    -102  0.7  0.1  0.4  1.1  

SA  -22  0.4  0.5  -0.2  0.4    -130  0.8  0.2  0.4  1.1  

Int.  -30  0.4  0.4  -0.1  0.6    -117  0.6  0.1  0.2  1.2  

f0  -48  0.5  0.6  0.1  0.4    -101  0.6  0.1  0.1  1.0  

Dur.  -54  0.8  0.7  -0.1  0.8    -110  0.3  0.1  0.1  1.0  

Table 1. Results of inferential models predicting listener responses from both raw and talker-compensated 

acoustic cues in a multinomial logistic regression. The first row shows the Deviance statistic (D), which 

equals -2 times the log-likelihood of the model, the overall classification accuracy, and the accuracy on 

each tense-lax pair (/i, ɪ/, /ɑ, ʌ/, /u, ʊ/). Relative changes in these statistics from models excluding each 

parameter are shown in the next block, while changes due to the addition of an interaction term with a 

given cue are shown in the final block. 

 

Table 1 suggests that listener responses are primarily predicted by the first two formants, both 

in raw cue and talker-compensated cue models. While F1 contributes to the pattern of 

identification for all three vowel pairs, the unique contribution of F2 is primarily limited to the 

low vowels /ɑ, ʌ/. The next two consistent predictors are the dynamic spectral parameters (SC 

and SA), which contribute to overall model accuracy in both cue models (raw and talker-

compensated), though their impact on different vowel pairs is more variable than for F1 and F2. 

Loss of information about SC/SA is detrimental to the prediction of listener responses to high 

front vowels, but actually results in improved performance on high back vowels relative to when 

they are included in the model, though the size of this negative effect is smaller than the positive 

contribution for high front vowels. Fundamental frequency is primarily informative as a raw cue, 

which could be capturing general differences in talker accuracies, while duration, intensity, and 

the third formant frequency exhibit relatively minor unique contributions to model fit.  

Thus, in general, whether models were trained with raw cues, or after compensating for talker 

mean differences, the relative contributions of each cue in predicting listener responses in the 

inferential model were similar. However, we will return to this comparison in the predictive 

models, which more directly replicate the way models were evaluated as ideal perceivers in 

McMurray and Jongman (2011). 

As for the effect of speech style on individual cue utilization power, very little change can be 

observed in model fit for any specific cue interaction. All increases in model accuracy were 

between 0.3 and 0.8%, with high front vowels exhibiting the greatest change, followed by the low 

vowel pair, and lastly the high back vowels. And while no particular cues emerge as uniquely 

modulated by speech style, the relative contribution of speech style is significant in all of the 
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above models (as reflected in deviance changes, ∆D, greater than the critical value of 18.3 on 10 

degrees of freedom). This suggests that listeners are not reweighting or recalibrating their use of 

any particular cue as a function of speech style, because the model improves similarly for each 

cue that is allowed to vary according to style (i.e., when the ideal perceiver is assumed to apply 

independent weights to a given cue in clear and plain speech).3 

 

 
Figure 6. Predictive audio-only (AO) model results from models fit to raw cues (orange lines), talker-

compensated cues (blue lines) and talker+style-compensated cues (violet lines), with no simulated noise on 

the parameters (solid lines), simulated noise based on random perturbations from a normal distribution of 

mean 0 and standard deviation 0.25 (dashed lines), and simulated noise of σ = 0.5 (dotted lines). Listener 

accuracies on AO stimuli (solid black lines) are provided for reference. 

 

Predictive Models. Next, we fit predictive acoustic models in a manner designed to replicate 

the listener task as closely as possible. Here, models had no access to the listeners behavior, but 

were trained to predict the talker’s intended vowel. The goal was to characterize the degree to 

which the listener pattern of accuracy would emerge from the statistical structure of the cues.  

Again, multinomial logistic regressions were trained on the 12 speakers’ data in the Leung et 

al. (2016) database. However, this time the dependent variable was the target vowel intended by 

the talker (i.e., we are no longer directly modelling listeners’ responses so only the target category 

is relevant). Predictive models were first trained on the 12 speakers in the corpus (Tang et al., 

2015; Leung et al., 2016) whose data was not presented to listeners. Next, the data from the six 

speakers that were presented to listeners is used as the test data for model evaluation.   

Three separate models were considered initially, each with all eight cues discussed above, but 

differing in whether the cues were entered into the model in their raw form, as talker-compensated 

cues (i.e., the same residuals used in the inferential models), or as talker+style-compensated cues.  

This latter set of cues used the same regression model as the talker compensated cues, but with a 

further predictor for speech style. It was intended as a secondary way to test whether cues might 

be used differently as a function of style. Each model was then tested on the six speakers’ data 

that was used for the perception task and not included in the training set.  

 
3 Given the additional degree of freedom afforded by adding the interaction term, significant improvements 

in model fit across cues could also be an artifact of the model specification, and thus we caution against 

interpreting these results as evidence for some kind of global cue weighting mechanism. 
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To simulate the effect of background noise (to mimic auditory constraints placed on listeners), 

we randomly perturbed each z-scored cue. This was done at two levels: with a SD of 0.25 (roughly 

corresponding to 75% overall model accuracy, close to, but slightly lower than listener averages), 

and with an SD of 0.5 (corresponding to 65% overall model accuracy). Mean results for each 

model over 1000 iterations (sampling different perturbations) are shown in Figure 6. 

Figure 6 demonstrates that all three models closely approximated listener responses to tense 

vowel stimuli, particularly the compensated cue models (talker- and talker+style-compensated 

cues). This replicates McMurray and Jongman (2011) and extends the results to new vowels and 

to clear speech.   

However, the three models were less consistent in replicating the clear speech advantage for 

lax vowel stimuli in audio-only. The raw cue model shows the expected pattern at all three noise 

levels (clean, σ = 0.25, and σ = 0.5), but the compensated cue models only show this result when 

noise is added, with the highest noise level yielding patterns similar to the raw cue model but 

higher in accuracy. The talker+style-compensated model even shows a clear speech disadvantage 

under clean signal simulations.  

Finally, Figure 6 is consistent with the general picture of primarily talker-determined cue 

variability shown in Figure 5. The talker+style-compensated model performs nearly identically 

to the talker-compensated model.  

To unpack this inconsistency in tense vs. lax vowel results, we examined the relative patterns 

in model performance as a function of vowel tensity and speech style when only one cue at a time 

is used as a predictor. In other words, we considered the degree to which each cue is able to 

partition the vowel space on its own, and compared these patterns with overall listener 

performance. Figure 7 displays the results of the single-cue predictive models, and for simplicity 

only considers talker-compensated cues in the absence of simulated noise. 

 

 
Figure 7. Predictive audio-only (AO) model results from models fit to single talker-compensated cues. 

Listener accuracies on AO stimuli (solid black lines) are provided for reference. 
 

From Figure 7 we can see that several cues—F1, F2, SC, and Duration—follow the speech 

style pattern for tense vowel stimuli in showing a clear speech advantage, while others, like 

Intensity (Amp), show a pattern contrary to the listener result (i.e., plain speech more accurate 

than clear). For lax vowel stimuli, only SC and Intensity are consistent with the listener pattern, 

while Duration, F2, and F3 (particularly F2) models show the opposing plain speech advantage. 
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Thus, the aggregate model results on lax vowel stimuli in Figure 6 appear to be driven by a handful 

of cues for which lax vowels are more distinct in clear speech than in plain, despite the fact that 

certain cues pose a notable disadvantage in clear speech.  

This result provides evidence that even when aggregate improvement is shown in listener 

recognition of clear speech, on some dimensions (notably F2 and duration) clear speech can 

reduce the amount of information available in the signal to support perception. Further, some 

apparent code-based modifications, such as the relatively greater lengthening of vowel duration 

for tense vowels than for lax vowels (Leung et al., 2016), while consistent with the perceptual 

asymmetry shown in Figure 7 (i.e., that duration modifications are more informative for tense 

than for lax vowels), are not completely utilized in perception. This is shown in the result that 

duration remains relatively uninformative in the inferential models, and is detrimental for clearly 

spoken lax vowels in the predictive models. One possible explanation for this latter result is that 

the mixed presentation of clear and plain speech styles caused cues with greater distributional 

variability under speech style modifications, such as vowel duration,4 to be less reliable in 

perception. Listeners may then have shifted attention to more reliable cues, such as spectral 

change, which consistently index tensity in both clear and plain speech styles. 

 

3.3.2 Visual-only models 

We next considered models of visual-only perception. To convert the dynamic visual information 

in the videos to cues that could be used in a model, we use data acquired from automatic 

recognition of facial landmarks in Tang et al. (2015) as our independent variables. This was then 

used to predict both listener responses (the inferential model) and serve as a model of the general 

six-alternative forced-choice task given to listeners (the predictive model).  

Summary of Phonetic Analysis. Tang et al. (2015) showed that speakers modify their speaking 

style to produce clear speech with exaggerated visual cues for vertical and horizontal lip stretching 

(VLS and HLS, respectively), lip rounding (LR), jaw displacement (JD), and duration (Dur.). In 

particular, in clear speech, speakers showed greater vertical lip stretch and jaw displacement 

across vowels, greater horizontal lip stretch for front unrounded vowels, and greater degrees of 

lip rounding for rounded vowels than in plain speech. Further, all clear vowels were longer than 

their plain counterparts, similar to what was observed in the acoustic analysis (Section 3.3.1), 

though visually the movement of articulators need not coincide exactly with the onset/offset of 

audible speech.   

Crucially for the current research, the articulatory results also reveal that tense and lax vowels 

were modified to the same extent, on average, in clear speech. This average equivalence in effects 

of speech style partly derives from the fact that for some cues, such as vertical lip stretch (VLS), 

clear speech resulted in greater similarity within vowel pairs, while for others, such as jaw 

displacement (JD), clear speech modifications resulted in an increase in tense-lax distinctiveness. 

For summary statistics on the visual characteristics clearly and plainly spoken tense and lax vowel 

stimuli in this study, see Table B2 in the Appendix. 

Variance Models. As with the acoustic analyses, we also conducted a hierarchical regression 

analysis to assess the overall amount of variance accounted for each contributing factor. Figure 8 

displays visual parameter definitions alongside the relative variance in that parameter attributable 

to talker, vowel tensity, and speech style differences, as Figure 5 did for acoustic cues. Relative 

to Figure 5, we can see that speech style accounts for greater variance on top of talker and vowel 

tensity differences than in the audio-only modality, with notable variation in VLS with speech 

style. The duration results are comparable to Figure 5, though lower in talker variance due to the 

relatively less precise measurement of word onset and offset in the video signal. 

 

 
4 Clear tokens of lax vowels (x̄ = 205 ms) are nearly as similar in duration to plain tense vowels (272 ms) 

as plain lax vowels (165 ms). 
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Figure 8. Visual parameter definitions and relative variance accounted for by Talker, Tensity, and Style, 

where tensity effects are considered in addition to variance already captured by talker differences, and 

style effects derive from the further variance explained by an interaction between Style and Tensity. 

 

Inferential Models. The inferential model was conducted similarly to the acoustic model, only 

with the five visual cues as predictors and the perceiver responses in the visual-only condition as 

the dependent variable.  

Results are presented in Table 2. Several key patterns in cue weight structure are evident in 

Table 2. First, Duration exhibits the greatest unique contribution to model fit in both raw and 

talker-compensated cue models; however, both Vertical and Horizontal Lip Stretch parameters 

are nearly as informative, particularly when we compensate for talker. This is notable given that 

some redundancy in lip position and movement information is expected between the three lip 

parameters. While raw cue model accuracy was responsive to all the cues (to some extent), for 

every cue but Jaw Displacement the overall results were primarily driven by the high back vowels 

/u, ʊ/ – other vowels showed little to no difference. 

In the talker-compensated model, only HLS and Duration retain the strong link with high 

back vowel performance, while VLS, Lip Rounding, and Jaw Displacement all play a greater role 

in discriminating the tense and lax low vowels /ɑ, ʌ/. Generally speaking, compensating for talker, 

no single cue appears to be closely linked to tensity perception in the high front vowels, though 

overall model accuracy on the /i, ɪ/ pair is not notably lower than the other two (low vowel 

accuracy is the lowest in the raw cue model, and low and high-front pairs are equal in the talker-

compensated cue model). Finally, in terms of overall accuracy the talker-compensated model 

outperformed the raw cue model by 6%, contrary to the audio-only condition where the two 

models were equivalent (73.5% vs. 73.2%, respectively, for raw and compensated cues). 
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 Raw Cues   Talker-Compensated Cues 

Baseline D  Acc.   /i, ɪ/  /ɑ, ʌ/  /u, ʊ/    D  Acc.  /i, ɪ/  /ɑ, ʌ/  /u, ʊ/  

 13963  26.4  62.0  57.1  65.9    12527  32.4  60.5  59.9  63.8  

 
Change Relative to Baseline Due to Dropped Cues 

VLS  601  -3.2  0.0  -0.6  -9.9    664   -3.5 0.1  -1.2  -5.9  

HLS  338  -1.6  -0.4  -0.4  -2.0    790  -3.4  0.0  -1.4  -0.3  

LR  171  -1.1  0.1  -0.5  -2.4    31  -0.2  0.0  -0.5  -0.2  

JD  374  -1.7  -0.6  -0.2  0.1    292  -1.5  -0.2  -0.8  -0.2  

Dur.  993  -4.8  -3.2  -2.1  -13.9    829  -4.6  -1.2  -0.8  -12.4  

 
Change Relative to Baseline Due to Added Interaction of Cue with Style 

VLS -192  0.8  0.7  -0.2  0.2    -218  1.4  0.3  1.5  1.3  

HLS -192  0.8  0.3  0.0  0.5    -388  1.7  0.1  1.1  1.1  

LR  -275  1.2  0.3  1.2  0.1    -256  1.4  0.7  1.6  0.5  

JD  -260  1.1  0.1  0.1  3.2    -269  1.4  0.2  1.2  2.5  

Dur.  -80  0.4  0.0  0.5  0.8    -235  1.2  0.3  1.7  0.4  

Table 2. Results of inferential models predicting listener responses from both raw and talker-compensated 

visual cues in a multinomial logistic regression. The first row shows the Deviance statistic (D), which 

equals -2 times the log-likelihood of the model, the overall classification accuracy, and the accuracy on 

each tense-lax pair (/i, ɪ/, /ɑ, ʌ/, /u, ʊ/). Relative changes in these statistics from models excluding each 

parameter are shown in the next block, while changes due to the addition of an interaction term with a 

given cue are shown in the final block. 

 

Regarding interactions with speech style, the inclusion of interaction terms had a substantially 

greater effect in the VO model than in the AO model. This was perhaps expected given the large 

amount of variance associated with speech style (Figure 8). In the raw cue models, we saw the 

greatest impact of cue by speech style interactions for LR and JD (overall accuracy increased by 

1.2% and 1.1%, respectively). For jaw displacement this effect was carried by the high back 

vowels. In contrast, for lip rounding this was carried by the low vowels. This result is perhaps 

surprising given that we expect a greater dependence of the /ɑ, ʌ/ distinction on jaw displacement, 

and similarly for lip rounding and /u, ʊ/. However, considering the interaction between speech 

style and vowel tensity in VO perception in Section 3.1 (and replicated below in the predictive 

model results), this result could be capturing the fact that the conflicting nature of such cues in 

clear speech makes them poorly modeled as a function of speech style, because their resultant 

down-weighting in clear speech may ultimately lead to less overall improvement in the predictive 

power of the model. 

This general pattern is retained for talker-compensated cues (i.e., LR  Style improves /ɑ, ʌ/, 

JD  Style improves /u, ʊ/). However, the lip stretch parameters (VLS, HLS) interact more with 

speech style relative to raw cue models, with the increase in model accuracy primarily reflected 

in improved prediction of listener responses to back vowels (/ɑ, ʌ/ and /u, ʊ/ accuracies increased 

between 1.1 and 1.5%). Finally, as in the models examining the weighting of individual cues, 

high front vowels show little change. 
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Figure 9. Predictive visual-only (VO) model results from models fit to raw cues (orange lines), talker-

compensated cues (blue lines) and talker+style-compensated cues (violet lines). 

 

Predictive Models. Figure 9 displays the results of raw, talker-compensated, and talker+style-

compensated cue models alongside perceiver recognition patterns for visually presented tense and 

lax vowels. All three models capture the clear speech advantage for tense vowels, though their 

overall accuracy was substantially lower than the perceivers’. The model based on talker-

compensated cues shows the greatest predicted clear speech advantage, while both raw and 

talker+style-compensated cue models show a smaller advantage but one that is more consistent 

with that observed for perceivers. For the critical reversal of speech style effects on lax vowels, 

however, both the talker-compensated and raw cue models showed the plain speech advantage 

exhibited by perceivers, though to a slightly lesser degree. However, the fully compensated model 

did not. Thus, in aggregate both raw and talker-compensated cue models are consistent with 

perceiver performance.  

We next examined the predictive models’ fit to single cues to determine whether clear speech 

had a similar benefit for each cue. That is, as in 3.3.1, this analysis assesses the degree to which 

partitions of the six-vowel space according to a single cue are consistent with listener accuracies 

on tense and lax vowels in clear and plain speech. Here we restrict our attention to the talker-

compensated models, because they more closely fit the overall listener accuracy patterns, 

particularly for tense vowels. 

Figure 10 displays the results of independent cue models. Both Duration and Horizontal Lip 

Stretch show substantial clear speech advantages for tense vowels, as expected from the listener 

data, while Vertical Lip Stretch shows a slight clear speech advantage. The remaining two 

parameters (Lip Rounding and Jaw Displacement) perform at chance (0.167) and thus do not yield 

any difference between the two speech styles. In predicting lax vowel perception, however, only 

Duration is consistent with listener performance in showing a plain speech advantage. HLS and 

VLS lose the clear speech advantage shown for tense vowels, but VLS performance is around 

chance and HLS performance is only marginally better at just below 20%. Thus, we can conclude 

that Duration is clearly important in accounting for the conflicting cues generated by clear speech 

for vowel tensity perception, with the remaining cues consistent with the conflict (all advantages 

disappear for lax vowels) but not independently robust. 
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Figure 10. Predictive visual-only (VO) model results from models fit to single talker-compensated cues. 

Listener accuracies on VO stimuli (solid black lines) are provided for reference. 

 

In summary, in modeling the impact of clear speech on visual cue parsing in the absence of 

acoustic information, multivariate cue models are consistent with perceiver response patterns in 

showing a clear speech advantage for tense vowels, and a clear speech disadvantage for lax 

vowels. The single cue that best reflects this reversal, however, is one that is also available in 

auditory perception: duration. And while the two lip stretch parameters show a clear speech 

advantage for tense vowels that disappears for lax vowels, they are not able to independently show 

the robust advantage for plain speech that perceivers exhibit. Whether this result implies a priority 

for visual cues consistent with those available in the acoustic signal is unclear at present, and 

ultimately will require a larger sample of audio-visual perception errors (with noise in the visual 

display manipulated in addition to the acoustics) to test. 

 

4.0 Discussion 

Previous research indicates that the perception of clear speech depends on several factors, 

including the saliency of the source of information (acoustic or articulatory) (Maniwa et al., 2008; 

Robert-Ribes et al., 1998), the perceptual weighting of auditory and visual cues (Gagné et al., 

2002; Helfer, 1997), and the linguistic experience of the perceivers (Bradlow and Bent, 2002; 

Fenwick et al., 2015). The goal of the present study was to provide a comprehensive approach to 

the study of clear speech by integrating acoustic, articulatory (facial), and perceptual data in an 

attempt to determine the extent to which these factors affect speech intelligibility. Specifically, 

we tested the perception of English tense and lax vowels by both native English and non-native 

Mandarin perceivers based on audio-visual, audio-only, and video-only input. 

The tense/lax vowel distinction was selected because its acoustic and articulatory correlates 

are similar to those of the clear/plain speech distinction. For example, all vowels are lengthened 

in clear speech (Ferguson and Kewley-Port, 2002, 2007; Ferguson and Quené (2014); Leung et 

al., 2016; among others), but vowel duration also serves as a cue to the tense-lax distinction. 

Similarly, clear speech is generally marked by an expansion of the vowel space, where changes 

in F1 and F2 from plain to clear mirror those from lax to tense. This similarity allowed us to 

establish whether the use of the same acoustic or articulatory properties differs depending on the 

communicative goal to be achieved. Further, the manner in which perceivers map variation onto 
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different sources – speech style versus vowel tensity – provided insight into the distinction 

between global signal-based modifications and local code-based modifications.  

Three lines of evidence were used to evaluate this distinction with respect to the present data. 

First, we evaluated the perceptual consequences of clear speech in AO, VO, and AV modalities 

in native, L1 listeners. Second, we compared native vs. non-native response patterns. Finally, we 

evaluated the fit between observed English perceiver responses and those predicted based on 

acoustic and visual cues. 

 

4.1 Clear speech enhancement in L1 listeners 

Our perception results show that English perceivers generally exhibited a clear speech advantage 

for both tense and lax vowels across modalities, consistent with the previous findings for clear-

speech intelligibility of segments with both auditory (Ferguson and Kewley-Port, 2002) and visual 

input modalities (Gagné et al., 2002). However, perception of tensity was affected by both speech 

style and modality: while a clear speech gain was observed for both tense and lax vowels in the 

AO modality, clear speech modifications confounded visual cues to lax vowels, resulting in the 

absence of a clear speech benefit in the AV modality, and a clear speech disadvantage in the VO 

condition. A breakdown of perceivers’ accuracy in terms of the features [tense], [back], [high], 

and [round] confirmed that errors consistent with a clear speech disadvantage were due to tensity 

misperceptions in the VO modality. 

In our prior articulatory study, we found no interaction between style (plain or clear) and 

vowel tensity, indicating that clear speech articulatory modifications did not differ between tense 

and lax vowels (Tang et al., 2015). These clear speech modifications included greater extent of 

movement and greater overall duration. In the present study in the VO modality, these 

characteristics led perceivers to identify more vowels as tense overall, resulting in the observed 

worse performance on clear lax than plain lax vowels.  

These interactive effects between speech style, input modality and vowel tensity support our 

prediction that the distinctions between signal- and code-based clear speech modifications are 

also reflected in perception to differentially affect intelligibility. Our results indicate that code-

based modification in clear speech did not occur universally across vowels and input modalities. 

In particular, clear speech aided tense vowel perception in the visual modality, but appeared to be 

detrimental in visual lax vowel perception.  

This is similar to what was shown in our articulatory study of these vowels (Tang et al., 2015): 

clear-speech modifications, which also involve hyperarticulation, are compatible with the 

inherent features of tense vowels. In the case of vowel tensity, these modifications appear to 

confound a strong distinction between signal- and code-based modifications. For tense vowels, 

these modifications enhance the distinctiveness of the visual cues characterizing tense vowel 

categories, thus facilitating their increased intelligibility in clear speech. In contrast, our 

articulatory results show that lax vowels underwent a similar extent of clear speech modifications 

as tense vowels (Tang et al., 2015). As lax vowels are characterized by less extreme (and shorter) 

articulation (Hillenbrand et al., 1995), such clear speech modifications conflict with the intrinsic 

features of the lax vowels, making them approximate their tense vowel counterparts and thus 

blurring category distinctions. As such, these signal-enhancing modifications of lax vowels result 

in vowels with tense vowel features which distort the phonemic category distinctions and 

consequently hurt perception. In this case, signal-based modifications (longer and stronger 

articulation) affect the primary cues to the contrast, and are therefore interpreted as code-based. 

 

4.2 Native vs. non-native response patterns 

Inclusion of native English and Mandarin perceivers served to further assess enhancement. While 

signal-based modifications have been shown to be beneficial to both native and non-native 

listeners, code-based modifications, which do not affect acoustic properties across the board but 

instead affect one or more properties to specifically distinguish one phoneme from one or more 

other phonemes were predicted to be only or more beneficial to native listeners, who have learned 

to associate specific patterns of cues with phonemic categories. English speakers have tense and 

lax vowels and were expected to show a clear speech advantage for both. Since Mandarin does 
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not have lax vowels, Mandarin perceivers were expected to show no clear speech benefit for lax 

vowels in the auditory modality. 

Mandarin perceivers performed similarly to English perceivers, with two notable exceptions. 

First, Mandarin perceivers showed a clear speech disadvantage for lax vowels not only in the VO 

modality but also in the AV modality. Thus, compared to English perceivers, Mandarin perceivers 

showed this disadvantage whenever visual information was available. This could derive from a 

greater reliance on visual information. This finding is consistent with previous research that has 

shown that non-native perceivers attend more to visual cues than native perceivers (Hazan et al., 

2010).  

Second, Mandarin perceivers did not show a clear speech advantage for lax vowels in the AO 

modality. This result would seem to be an effect of native language background, given that 

Mandarin has tense but not lax vowels. Featural analysis showed that errors were almost entirely 

due to tensity misperceptions in all three modalities. Overall, the cues that Mandarin perceivers 

seem to rely on for the tense/lax distinction are also the cues that signal the clear/plain distinction.  

This raises the possibility that L2 listeners lack the auditory skills necessary to properly parse 

the acoustic cues for tensity from other sources of variability in the signal (the clear speech 

modifications). That is, they were less successful at coping when signal-based modification 

affected code-based cues. 

However, more broadly Mandarin perceivers benefited from clear speech in both auditory 

and visual perception of the tense vowels (which exist in Mandarin) but not for unfamiliar lax 

vowels. This confirmed our prediction with respect to effects of linguistic experience on clear-

speech intelligibility. These results are consistent with the previous findings of the lack of or even 

detrimental clear speech effects on L2 perception (Fenwick et al., 2015; Granlund et al., 2012; 

Smiljanić and Bradlow, 2011). The patterns exhibited by the Mandarin perceivers have further 

implications for signal- versus code-based explanations of clear-speech intelligibility. First, the 

AO results indicate the effectiveness of code-based clear speech perception, in that Mandarin 

perceivers were able to utilize code-based cues in improving tense vowel perception in clear 

speech but failed to adopt the critical cues characterizing lax vowels to further improve lax vowel 

intelligibility. If their perception were based on signal-enhancing cues, we would have expected 

no difference in clear-speech effects between tense and lax vowel perception. Furthermore, the 

negative clear speech effects on the AV and VO perception of lax vowels indicate that signal-

enhancing clear-speech modifications (which reduce category distinctiveness) can be even more 

detrimental to non-native perceivers (than to native perceivers), as non-natives appear to rely 

more on visual cues.  

 

4.3 Direct prediction of English perceiver responses from acoustic and visual cues 

Next, we related acoustic and articulatory measurements to the perception results to determine to 

what extent each cue contributes to perceivers’ performance. Results from this inferential 

approach show that F1 and F2 are the main acoustic cues used by listeners, followed by spectral 

change and spectral angle. While speech style did not affect any specific cue in particular, it did 

have a small but consistent effect across all cues. In terms of visual cues, duration emerged as the 

primary cue, followed by vertical and horizontal lip stretch. In addition, speech style had a 

stronger influence in the visual than in the auditory modality.   

Finally, we used three statistical models to determine which was most accurate at predicting 

the pattern of responses observed in the perceivers: raw cues, cues compensated for talker, and 

cues compensated for talker and speech style. These were trained based on either acoustic or 

visual cues.  

Results from this predictive approach for acoustic cues indicate that all three models 

performed qualitatively similarly to listeners for the tense vowels. However, for the lax vowels, 

only the raw cue model replicated the perceivers’ clear speech advantage at all noise levels. The 

compensated cue models only showed this pattern when noise was added. There was little 

difference in performance between the two compensated cue models, confirming that the 

variability in acoustic cues was largely determined by the talkers, not by the style. F1, F2, spectral 

change and duration all contributed to the clear speech advantage for tense vowels, but only 

spectral change and amplitude did so for the lax vowels. This suggests that while listeners may 
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track the current talker (and compensate for this variance), they may not do so with “style” – that 

is, they are not compensating specifically for modifications due to clear or plain speech. 

For the visual cues, all three models again captured the clear speech advantage for tense 

vowels observed in our perceivers. The reversal of this effect for the lax vowels (a clear speech 

disadvantage) was captured by the raw and the talker-compensated cue models. Duration and 

horizontal lip stretch contributed to the clear speech advantage for tense vowels while duration 

was the only cue that predicted the clear speech disadvantage for lax vowels. 

Integrating the results from each modality, the clear speech disadvantage for lax vowels in 

video-only was seen to arise from the fact that visually, all vowels, both tense and lax, are 

lengthened to the same degree. Our modeling showed that duration does appear to drive 

perceivers’ responses in the visual modality. As a result, there is a greater tendency for clear lax 

vowels to be misperceived as tense. Acoustically, however, clear speech does not affect all vowels 

in the same way or to the same degree. Clear tense vowels are lengthened much more than clear 

lax vowels, but clear lax vowels exhibit greater spectral change than clear tense vowels. In the 

auditory modality, these modifications resulted in a clear speech benefit for both tense and lax 

vowels. However, this advantage disappeared for lax vowels in the audio-visual modality, 

suggesting that the conflicting visual information increased the ambiguity of the audio-visual 

information. 

The results of our inferential and predictive models are consistent with previous results. Our 

previous analysis (Leung et al., 2016) demonstrated both signal- and code-based acoustic cue 

modifications. There was a signal-based, global increase in intensity from plain to clear speech 

and code-based clear speech effects were observed in the static formant frequency results, with 

the direction of plain-to-clear modifications resulting in more peripheral formant patterns in clear 

speech. Code-based modifications were also shown in the greater tense-lax contrast in clear 

speech for formant dynamicity and vowel duration. Our current inferential models showed that 

speech style consistently affected all cues in predicting English perceivers’ performance, 

suggesting a role of signal-based modifications contributing to their performance. Code-based 

modifications closely aligned with the intrinsic vowel properties. Consistently, our audio-only 

predictive models showed that code-based modifications predominantly contributed to the clear 

speech advantage of tense vowels, demonstrated by the lesser vowel reduction of /ɑ/ and /u/ in 

terms of their F1 and F2 modifications and the greater tense-lax contrast of formant dynamicity 

and vowel duration in clear speech. For the clear advantage of lax vowels, the contribution of 

signal-based modifications came from the global increase in vowel intensity across speech style, 

whereas the contribution of code-based modifications was the greater spectral change (a critical 

feature characterizing lax vowels) in clear speech compared to plain speech. 

For our previous articulatory analysis (Tang et al., 2015), the findings also showed both 

signal-based and code-based modifications. Comparing the visual cue modifications across vowel 

types, all clear vowels involved greater vertical lip stretch and duration than their plain 

counterparts, which demonstrated signal-based modifications. Other visual cues exhibited code-

based modifications since the direction of modifications corresponded to the characteristics of 

specific vowel pairs. Consequently, these clear-speech modifications enhanced the phonemic 

contrasts in visual speech. Specifically, greater horizontal lip stretch was found only for clear high 

front vowels (/i-ɪ/); greater lip rounding for clear rounded vowels (/u-ʊ/); and greater vertical jaw 

displacement for clear rounded and low vowels (/u-ʊ/ and /ɑ-ʌ/). Integrating our inferential model 

results with articulatory analysis findings shows that such code-based modifications influenced 

English perceivers’ responses in the raw cue model based on the effect of speech style, although 

talker-compensated cues also showed interaction between speech style and cues that involved 

signal-based modifications (vertical lip stretch and duration). With respect to vowel tensity, our 

visual-only predictive models showed that both signal-based (duration) and code-based 

modifications (horizontal lip stretch) predicted substantial clear speech advantages for tense 

vowels, whereas only signal-based modifications (duration) accounted for the clear speech 

disadvantage. 

  



Page 31 of 39 

4.4 Implications for C-CuRE 

Our previous research suggests that listeners overcome the ubiquitous variability in the speech 

signal by engaging in a data-explanatory approach. That is, listeners do not make decisions based 

on raw cues; instead, they build up expectations about what a segment produced by a specific 

talker and in a specific context should sound like and then compare these expectations to the 

observed signal. The model which inspired this, C-CuRE, was developed based on acoustic and 

perceptual studies of fricatives. It works similarly to the talker-compensated inferential models 

described above: listeners code cues relative to their expected values given that talker or 

coarticulatory context. These cues are then weighted and combined and a simple decision making 

model (again, logistic regression) choses the ultimate response. 

Our initial evaluation of this model, we found that listener-like fricative identification could 

only be achieved by a model in which acoustic cues were interpreted relative to the talker and 

vowel context (McMurray and Jongman, 2011)—as seen here, raw cues were insufficient to drive 

high levels of accuracy. This suggests that listeners are actively forming expectations about what 

speech cues should sound like, and using the degree of match or mismatch as information for 

further processing. Supporting this, subsequent empirical work showed that providing listeners 

with such contextual information (i.e., an image of the talker) resulted in faster and more accurate 

fricative identification (McMurray and Jongman, 2015). 

The present study extends our approach to vowel tensity and, more importantly, is the first 

attempt to incorporate visual cues. In general, C-CuRE is successful in that vowel classification 

based on compensated cues (for talker and style) was better than that based on raw cues. This 

suggests that the computational approach embodied in C-CuRE can be used to not only investigate 

the contributions of talker and vowel context but of speech style as well. However, in contrast to 

the fricative studies, the present results indicate that while compensation generally led to better 

classification, it did not always result in more perceiver-like categorization. One possibility for 

this discrepancy could be the nature of the categories under investigation. The English fricatives 

provided a perfectly balanced set of contrasts (4 places of articulation, each with a voiced and a 

voiceless member) which perhaps made them eminently suitable for the linear-based 

compensation of C-CuRE which employs a series of hierarchical linear regressions. Vowels, on 

the other hand, contrast along several additional dimensions which may require inclusion of non-

linear transformations in our model. 

A second possibility is that C-CuRE was designed mainly to deal with speech cues—the code. 

It assumes that each cue can be extracted reliably from the signal. However, this assumption is 

likely false. In fact, signal-based modifications due to clear speech may primarily serve to make 

it easier to extract and identify cue values from speech. Thus, future work with C-CuRE should 

consider modelling cue extraction as a probabilistic (rather than deterministic) and sometimes 

inaccurate process. This may help extend this model to consider signal-based processes rather 

than just code-based. 

 

4.5 General implications for signal- vs. code-based explanations 

In summary, findings from our perception study suggest that perceivers were affected by both 

signal- and code-based clear speech modifications. However, code-based clear-speech cues that 

are aligned with vowel intrinsic properties appear to be more effective than signal-based cues in 

aiding intelligibility. Comparisons of the native and non-native perceptual patterns indicate that 

perceivers need to be able to identify and utilize language-specific, code-based cues to improve 

intelligibility. A subset of these modifications contributed to the clear speech perceptual 

advantage in both production (audio or visual) and perception domains. However, perceptual 

patterns can be primarily predicted by code-based cues; when only signal-based clear speech 

modifications influence perception, this leads to greater chance of misperception, as exemplified 

by the clear-speech disadvantage of lax vowels in visual-only.  

The alignment of code- and signal-based modifications challenges a strong distinction of 

signal- versus code-based explanations. In fact, under some conditions listeners appear to 

misinterpret clear-speech based lengthening and hyperarticulation as indicating that the talker 

intended a different vowel. This suggests that listeners (particularly non-native listeners) may not 

have a clear distinction between such changes. This is not to say that code- and signal-based 
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changes are always confounded—in most circumstances these largely affect different cues. 

However, this particular case (and likely others) is a boundary condition that illustrates the 

complexity of this distinction.  

Taken together, results from the current audio-visual study are in keeping with the auditory-

based principles governing clear speech production and perception, suggesting that clear speech 

modifications, be they articulatory or acoustic, need to be balanced between enhancing signal 

saliency and preserving phonemic distinctions, with the language-specific, category-defining cues 

being the most effective cues to improve intelligibility. 

 

5.0 Concluding remarks 

The approach advocated in the current study is to carefully examine properties of the signal, both 

acoustic and visual, at the individual cue level to determine which specific properties define the 

categories that must be identified in perception, and how those properties are affected by changes 

in speech style. That is, we know from literature on clear speech acoustics and articulation that 

modifications are non-uniform across cues, and therefore we expect perceptual uptake of 

acoustic/visual information to be similarly complex. By adopting a more nuanced approach to the 

link between characteristics of clear speech production and cross-modal perception, we hope to 

achieve a better understanding of the extent to which clear speech modifications may be beneficial 

for communication and why.  
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Appendix A 

 

Table A1  English Perceiver Models 

Dependent Variable: Overall [tense] [back] [high] [round] 

 Estimate Estimate Estimate Estimate Estimate 

   (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) 

Intercept 3.395*** 3.435*** 6.754*** 5.640*** 5.848***  

 (0.25) (0.24) (0.56) (0.43) (0.44) 

Mode (AO)  -1.476*** -0.856*** -3.384*** -0.461 -2.886***  

 (0.16) (0.17) (0.49) (0.38) (0.36) 

Mode (VO)  -2.747*** -2.693*** -2.849*** -2.893*** -2.625***  

 (0.30) (0.30) (0.62) (0.48) (0.48) 

Style (clear)  0.523** 0.548** 0.844 0.210 0.134  

 (0.20) (0.21) (0.70) (0.39) (0.40) 

Tensity (lax)  0.430 1.270*** 0.867 -0.517 -0.628  

 (0.29) (0.33) (0.71) (0.41) (0.42) 

Mode x Style (AO, clear)  -0.015 0.335 -0.374 -0.429 0.027  

 (0.24) (0.26) (0.72) (0.48) (0.43) 

Mode x Style (VO, clear)  0.107 0.098 0.863 0.277 0.097  

 (0.22) (0.23) (0.76) (0.41) (0.43) 

Mode x Tensity (AO, lax) -0.068 -0.240 -0.269 -0.602 0.534  

 (0.23) (0.28) (0.64) (0.41) (0.37) 

Mode x Tensity (VO, lax) -0.037 0.228 -2.241** -0.451 0.874  

 (0.38) (0.42) (0.82) (0.50) (0.53) 

Style x Tensity (clear, lax) -0.243 -0.729* -1.357 0.840 0.889  

 (0.29) (0.33) (0.91) (0.52) (0.53) 

Mode x Style x Tensity 0.181 0.227 1.339 -0.287 -0.701  

    (AO, clear, lax) (0.34) (0.41) (0.95) (0.63) (0.57) 

Mode x Style x Tensity  -0.785* -1.097** 0.573 -0.508 -1.002  

    (VO, clear, lax) (0.32) (0.36) (0.97) (0.56) (0.59) 

N 13607 13607 13607 13607 13607   
LL  -4910 -3895 -1958  -2307 -2415      

Random Effects (σ)           

  Item  1.174  1.207  1.719  1.250  1.30       

  Subject  0.634  0.540  0.881  1.116  1.17       

  Subject / Mode (AO)  0.154  0.131  0.629  0.226  0.68       

  Subject / Mode (VO) 0.626  0.487  0.708  1.183  1.06       

* p ≤ 0.05   ** p ≤ 0.01   *** p ≤ 0.001      
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Table A2  Mandarin Perceiver Models  

Dependent Variable: Overall [tense] [back] [high] [round] 

 Estimate Estimate Estimate Estimate Estimate 

   (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) 

(Intercept)  1.233*** 1.359*** 5.863*** 3.977*** 3.992***  

 (0.17) (0.17) (0.40) (0.28) (0.28) 

Mode (AO)  -0.528*** -0.188 -3.068*** -0.104 -1.696***  

 (0.10) (0.10) (0.34) (0.22) (0.21) 

Mode (VO)  -1.371*** -1.282*** -1.954*** -1.470*** -1.259***  

 (0.19) (0.19) (0.42) (0.28) (0.30) 

Style (clear) 0.813*** 0.932*** 0.603 0.181 0.085  

 (0.10) (0.10) (0.32) (0.19) (0.19) 

Tensity (lax) 1.377*** 1.581*** 0.470 0.279 0.490  

 (0.21) (0.22) (0.39) (0.29) (0.31) 

Mode x Style (AO, clear) -0.147 -0.073 -0.208 -0.173 0.204  

 (0.13) (0.14) (0.35) (0.26) (0.22) 

Mode x Style (VO, clear)  0.115 0.044 0.292 -0.168 -0.197  

 (0.13) (0.13) (0.39) (0.22) (0.22) 

Mode x Tensity (AO, lax) -0.591*** -0.579*** 0.190 -0.567* -0.094  

 (0.14) (0.15) (0.32) (0.26) (0.23) 

Mode x Tensity (VO, lax) -0.183 0.340 -1.964*** -1.022** -0.088  

 (0.25) (0.27) (0.50) (0.35) (0.39) 

Style x Tensity (clear, lax) -1.469*** -1.716*** -0.295 0.122 0.210  

 (0.15) (0.16) (0.45) (0.28) (0.28) 

Mode x Style x Tensity 0.784*** 0.709*** 0.842 -0.209 -0.241  

    (AO, clear, lax) (0.20) (0.21) (0.50) (0.36) (0.33) 

Mode x Style x Tensity -0.045 -0.447* 0.039 0.395 -0.045  

    (VO, clear, lax) (0.19) (0.20) (0.51) (0.32) (0.34) 

N 19440 19440 19440 19440 19440 

LL  -9676 -8497 -3082 -4252 -4477 

Random Effects (σ)      

 Item  0.806  0.849  1.376  0.998  1.122  

 Subject  0.669  0.604  1.393  1.055  0.998  

 Subject / Mode (AO)  0.290  0.274  1.207  0.538  0.683  

 Subject / Mode (VO) 0.445  0.391  0.866  0.624  0.633  

 Subject / Tensity (lax)  0.543 0.591   0.542  0.544  

* p ≤ 0.05   ** p ≤ 0.01   *** p ≤ 0.001 
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Appendix B 

 

Table B1  Means and (standard errors) of acoustic parameters in Leung et al. (2016) 

  Tense Lax 

  /i/ /ɑ/ /u/ /ɪ/ /ʌ/ /ʊ/ 

  Clear Plain Clear Plain Clear Plain Clear Plain Clear Plain Clear Plain 

F1 Female 3.68 3.73 7.17 7.08 3.81 3.89 5.28 5.32 6.83 6.72 5.67 5.69 

(Bark)  (0.04) (0.04) (0.05) (0.07) (0.04) (0.04) (0.04) (0.04) (0.07) (0.07) (0.05) (0.05) 

 Male 2.90 2.89 6.48 6.45 3.31 3.30 4.47 4.52 6.21 6.07 4.79 4.72 

  (0.02) (0.02) (0.05) (0.06) (0.04) (0.04) (0.05) (0.05) (0.05) (0.06) (0.06) (0.06) 

F2 Female 15.05 15.03 10.12 10.33 10.29 10.56 13.58 13.51 11.85 11.87 11.76 11.95 

(Bark)  (0.03) (0.03) (0.03) (0.04) (0.09) (0.10) (0.03) (0.04) (0.05) (0.04) (0.06) (0.06) 

 Male 14.07 14.06 8.58 8.64 9.39 9.56 12.96 12.75 10.65 10.62 10.43 10.60 

  (0.05) (0.04) (0.04) (0.04) (0.12) (0.12) (0.07) (0.06) (0.06) (0.07) (0.09) (0.07) 

F3 Female 16.33 16.30 15.29 15.13 14.78 14.74 15.62 15.56 15.38 15.29 15.20 15.13 

(Bark)  (0.03) (0.03) (0.03) (0.03) (0.04) (0.05) (0.03) (0.03) (0.02) (0.03) (0.03) (0.03) 

 Male 15.86 15.88 14.91 14.82 13.90 13.92 14.96 14.83 14.61 14.60 14.22 14.15 

  (0.05) (0.04) (0.06) (0.05) (0.06) (0.06) (0.06) (0.05) (0.07) (0.06) (0.06) (0.06) 

Spectral Female 0.86 1.07 2.89 2.85 1.59 1.49 1.09 1.04 3.10 2.77 2.77 2.39 

Change  (0.04) (0.04) (0.09) (0.08) (0.09) (0.07) (0.04) (0.04) (0.09) (0.09) (0.09) (0.08) 

(Bark) Male 0.66 0.70 2.32 2.26 1.46 1.46 1.35 1.33 2.77 2.35 2.27 1.97 

  (0.03) (0.03) (0.10) (0.09) (0.08) (0.09) (0.05) (0.05) (0.12) (0.10) (0.13) (0.09) 

Spectral Female 3.06 3.11 3.13 3.14 3.12 3.13 3.12 3.14 3.14 3.15 3.15 3.15 

Angle  (0.02) (0.02) (0.00) (0.01) (0.02) (0.02) (0.01) (0.02) (0.00) (0.00) (0.01) (0.01) 

 Male 3.07 3.07 3.14 3.14 3.14 3.13 3.14 3.13 3.15 3.14 3.14 3.16 

  (0.02) (0.03) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.00) (0.00) (0.02) (0.02) 

Word Female 632 455 609 444 639 473 532 358 511 381 539 373 

Duration  (20.5) (10.0) (20.8) (9.1) (22.7) (12.4) (24.0) (8.6) (18.4) (9.8) (22.1) (9.6) 

(ms) Male 608 511 564 483 634 535 443 373 444 387 478 398 

  (14.2) (10.0) (12.3) (9.8) (18.2) (15.1) (12.3) (8.3) (12.1) (9.6) (12.7) (9.3) 

Vowel Female 364 251 349 261 390 274 230 167 217 177 250 182 

Duration  (12.4) (7.1) (13.3) (6.3) (16.5) (8.9) (12.8) (4.4) (7.1) (4.5) (11.1) (5.0) 

(ms) Male 340 279 307 269 369 307 163 146 162 150 185 163 

  (9.0) (5.7) (7.3) (5.9) (11.5) (8.8) (4.1) (3.1) (3.5) (3.2) (4.9) (3.5) 

Intensity Female 62.3 62.2 65.6 64.5 63.8 63.2 66.4 64.9 66.7 65.8 66.4 65.8 

(dB)  (0.4) (0.4) (0.5) (0.4) (0.4) (0.4) (0.4) (0.4) (0.5) (0.4) (0.4) (0.5) 

 Male 61.1 59.9 64.0 62.8 62.1 60.3 66.0 65.1 65.1 64.0 65.7 64.0 

  (0.5) (0.6) (0.5) (0.5) (0.6) (0.6) (0.6) (0.7) (0.5) (0.6) (0.6) (0.6) 

f0 Female 233 242 213 221 236 243 235 241 229 236 233 244 

(Hz)  (2.9) (4.2) (2.5) (3.6) (4.0) (4.9) (3.6) (5.1) (3.6) (4.7) (3.6) (5.7) 

 Male 117 114 110 109 117 116 124 120 117 114 124 121 

  (1.6) (1.6) (2.5) (2.5) (1.7) (1.8) (1.8) (2.1) (1.7) (1.8) (2.0) (2.1) 
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Table B2  Means and (standard errors) of visual parameters in Tang et al. (2015) 

   Tense   Lax  

  /i/ /ɑ/ /u/ /ɪ/ /ʌ/ /ʊ/ 
  Clear Plain Clear Plain Clear Plain Clear Plain Clear Plain Clear Plain 

Vertical Female 1.05 0.98 1.13 1.08 0.96 0.92 1.05 0.98 1.06 1.01 1.03 0.97 

Lip 

Stretch 
 (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

(norm.) Male 1.36 1.19 1.40 1.28 1.15 1.07 1.33 1.16 1.31 1.17 1.26 1.13 

  (0.03) (0.02) (0.04) (0.03) (0.03) (0.02) (0.04) (0.02) (0.03) (0.02) (0.03) (0.03) 

Horizontal Female 0.85 0.84 0.79 0.80 0.81 0.81 0.82 0.81 0.81 0.81 0.80 0.78 

Lip 

Stretch 
 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

(norm.) Male 0.99 0.93 0.88 0.89 0.88 0.89 0.97 0.94 0.91 0.90 0.87 0.88 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Lip Female 0.77 0.75 0.76 0.74 0.77 0.78 0.75 0.74 0.75 0.75 0.75 0.74 

Rounding  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

(norm.) Male 0.75 0.75 0.77 0.77 0.72 0.75 0.76 0.77 0.77 0.77 0.73 0.76 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Jaw Disp. Female 0.11 0.10 0.13 0.12 0.09 0.09 0.17 0.10 0.13 0.13 0.10 0.09 

(norm.)  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.06) (0.01) (0.01) (0.01) (0.01) (0.01) 

 Male 0.13 0.13 0.19 0.16 0.14 0.11 0.18 0.13 0.21 0.16 0.14 0.13 

  (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Word Female 1052 917 1036 904 1089 908 966 816 970 865 957 836 

Duration  (21.4) (15.6) (25.8) (14.2) (27.7) (18.0) (25.7) (14.3) (20.7) (16.6) (21.6) (13.7) 

(ms) Male 1077 947 1024 915 1095 959 916 818 912 823 932 832 

  (14.4) (11.8) (13.9) (10.1) (24.0) (16.8) (13.7) (11.5) (12.0) (11.5) (15.7) (10.8) 

 


